Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Dent Res ; 101(13): 1597-1605, 2022 12.
Article in English | MEDLINE | ID: mdl-36113100

ABSTRACT

Fluoride agents hold promise for the repair and prevention of caries lesions, but their interaction with enamel is often hampered and diminished because of the dynamic wet environment in the oral cavity, which affects the efficacy of fluoride delivery and limits treatment success. We herein developed a mussel-inspired wet adhesive fluoride system (denoted TS@NaF) fabricated by the self-assembly of tannic acid (TA), silk fibroin (SF), and sodium fluoride (NaF). TS@NaF demonstrated remarkable biological stability and biocompatibility, showed reliable wet adhesion, released fluoride ions (F-) topically, and induced significant deposition of calcium fluoride (CaF2) onto enamel in vitro. Furthermore, TS@NaF provided an anticaries effect in vitro and induced a detectable increase in enamel mineral density. Advanced fluoride-releasing bioadhesives are therefore promising candidates for caries prevention and highlight the great potential of mussel-inspired dental materials in clinical applications.


Subject(s)
Dental Caries , Fluorides , Humans , Fluorides/therapeutic use , Hydrogels , Dental Caries Susceptibility , Dental Caries/prevention & control , Sodium Fluoride/pharmacology , Sodium Fluoride/therapeutic use , Cariostatic Agents/therapeutic use
2.
J Dent Res ; 99(6): 685-694, 2020 06.
Article in English | MEDLINE | ID: mdl-32075512

ABSTRACT

Oral microbiome research has moved from asking "Who's there?" to "What are they doing?" Understanding what microbes "do" involves multiple approaches, including obtaining genomic information and examining the interspecies interactions. Recently we isolated a human oral Saccharibacteria (TM7) bacterium, HMT-952, strain TM7x, which is an ultrasmall parasite of the oral bacterium Actinomyces odontolyticus. The host-parasite interactions, such as phage-bacterium or Saccharibacteria-host bacterium, are understudied areas with large potential for insight. The Saccharibacteria phylum is a member of Candidate Phyla Radiation, a large lineage previously devoid of cultivated members. However, expanding our understanding of Saccharibacteria-host interactions requires examining multiple phylogenetically distinct Saccharibacteria-host pairs. Here we report the isolation of 3 additional Saccharibacteria species from the human oral cavity in binary coculture with their bacterial hosts. They were obtained by filtering ultrasmall Saccharibacteria cells free of other larger bacteria and inoculating them into cultures of potential host bacteria. The binary cocultures obtained could be stably passaged and studied. Complete closed genomes were obtained and allowed full genome analyses. All have small genomes (<1 Mb) characteristic of parasitic species and dramatically limited de novo synthetic pathway capabilities but include either restriction modification or CRISPR-Cas systems as part of an innate defense against foreign DNA. High levels of gene synteny exist among Saccharibacteria species. Having isolates growing in coculture with their hosts allowed time course studies of growth and parasite-host interactions by phase contrast, fluorescence in situ hybridization, and scanning electron microscopy. The cells of the 4 oral Saccharibacteria species are ultrasmall and could be seen attached to their larger Actinobacteria hosts. Parasite attachment appears to lead to host cell death and lysis. The successful cultivation of Saccharibacteria species has significantly expanded our understanding of these ultrasmall Candidate Phyla Radiation bacteria.


Subject(s)
Bacteria , Microbiota , Actinomyces , Bacteria/genetics , Genome, Bacterial , Humans , In Situ Hybridization, Fluorescence , Mouth
4.
J Dent Res ; 90(9): 1091-7, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21653221

ABSTRACT

Amelogenin's capacity to regulate enamel formation is related to its conserved N- and C-terminal domains, its ability to self-assemble, and its ability to stabilize amorphous calcium phosphate (ACP) - a capacity enhanced by amelogenin phosphorylation. This in vitro study provides further insight into amelogenin function, using variations of the Leucine-Rich Amelogenin Peptide (LRAP), an alternative splice product comprised solely of amelogenin's N- and C-terminal domains. Peptide self-assembly was studied by dynamic light-scattering and transmission electron microscopy (TEM). TEM, selected area electron diffraction, and Fourier transform-infrared spectroscopy were also used to determine the effect of phosphorylated and non-phosphorylated LRAP on calcium phosphate formation. Results show that phosphorylated and non-phosphorylated LRAP can self-assemble into chain-like structures in a fashion dependent on the C-terminal domain. Notably, this capacity was enhanced by added calcium and to a much greater degree for phosphorylated LRAP. Furthermore, phosphorylated LRAP was found to stabilize ACP and prevent its transformation to hydroxyapatite (HA), while aligned HA crystals formed in the presence of non-phosphorylated LRAP. The N- and C-terminal amelogenin domains in non-phosphorylated LRAP are, therefore, sufficient to guide ACP transformation into ordered bundles of apatite crystals, making LRAP an excellent candidate for biomimetic approaches for enamel regeneration.


Subject(s)
Amelogenesis , Calcium Phosphates/metabolism , Dental Enamel Proteins/chemistry , Dental Enamel Proteins/physiology , Tooth Calcification/physiology , Amelogenin/chemistry , Amino Acid Sequence , Animals , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Transmission , Molecular Sequence Data , Nanoparticles , Phosphorylation , Protein Structure, Tertiary , Spectroscopy, Fourier Transform Infrared , Swine
5.
Cells Tissues Organs ; 194(2-4): 188-93, 2011.
Article in English | MEDLINE | ID: mdl-21576914

ABSTRACT

N-terminal and C-terminal (CT) domains of amelogenin have been shown to be essential for proper enamel formation. Recent studies have also suggested that although the C-terminus plays an apparent role in protein-mineral interactions, other amelogenin structural domains are involved. The objective was to explore the role of the amelogenin N-terminus in the regulation of calcium phosphate formation in vitro. Spontaneous mineralization studies were carried out using the phosphorylated (+P) and nonphosphorylated (-P) N-terminus of the leucine-rich amelogenin peptide (LRAP) that lacks the hydrophilic CT domain. Mineralization progress was monitored via changes in solution pH. Mineral phases formed were characterized using TEM, selected area electron diffraction, and FT-IR. In controls, amorphous calcium phosphate was initially formed and subsequently transformed to randomly oriented hydroxyapatite (HA) plate-like crystals. In contrast to the control, LRAP(+P)-CT stabilized ACP formation for >1 day, while LRAP(-P)-CT accelerated the transformation of ACP to HA but had little effect on crystal shape or orientation. In conclusion, the N-terminal domain found in LRAP, as in amelogenins, appears to have the capacity to interact with forming calcium phosphate mineral phases. Results suggest that the N-terminal domain of amelogenin may play a direct role in early stages of enamel formation.


Subject(s)
Amelogenin/chemistry , Amelogenin/metabolism , Calcium Phosphates/metabolism , Amelogenin/ultrastructure , Amino Acid Sequence , Animals , Calcification, Physiologic/physiology , Dental Enamel Proteins/chemistry , Dental Enamel Proteins/ultrastructure , Hydrogen-Ion Concentration , Molecular Sequence Data , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Sus scrofa , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...