Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(42): 15897-15907, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36268659

ABSTRACT

To lessen the greenhouse effect, measures such as improving the recovery of crude oil and converting carbon dioxide (CO2) into valuable chemicals are necessary to create a sustainable low-carbon future. To this end, the development of efficient new oil-displacing agents and CO2 conversion has aroused great interest in both academia and industry. The Knoevenagel condensation and CO2 cycloaddition are the key reactions to solve the above problems. Four Cu- or Zn-based molecular complexes built from different ligands possessing hydrophilic-hydrophobic layers and different dimensionalities were chosen as solid catalysts for this study. Structural analysis revealed the presence of hydrophilic-hydrophobic layers and open metal sites in the low-dimensional complexes. To obtain deep insight into the reaction mechanism, first-principles density functional theory (DFT) calculations were carried out. These calculations confirmed that in the Knoevenagel condensation reaction, the final formation of benzylidenemalononitrile is the rate-determining step (an energy barrier (ΔE) value of 73.2 kJ mol-1). The zero-dimensional (0D) Cu molecular complex with unsaturated metal centers, hydrophilic and hydrophobic layers, exhibited higher catalytic activity (yield: 100%, temperature: room temperature, and time: 2 h) compared with one- and two-dimensional Cu complexes. In the presence of a 0D Zn complex co-catalyzed with Br- in the CO2 cycloaddition reaction, the ΔE value reduces to 35.5 kJ mol-1 for the ring opening of styrene oxide (SO), which is significantly lower than Br- catalyzed (80.9 kJ mol-1) reactions. The roles of unsaturated metal centers, hydrophilic-hydrophobic layers and dimensionality in the Knoevenagel condensation and CO2 cycloaddition were explained in the results of structure-activity relationships.

2.
Nanoscale ; 14(30): 10980-10991, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35861189

ABSTRACT

Ultrafine Pd nanoparticles are prepared using a single-ion precursor on a MOF-808 carrier. The ligand 2,3-pyrazinedicarboxylic acid (Pza) is dispersed in porous MOF-808 via grafting on formic acid sites, and thus Pd2+ ions are chelated by Pza to form a new single-ion precursor Pd@MOF-808-Pza. Then a Pd-nano@MOF-808-Pza catalyst is prepared by direct reduction of this precursor using NaBH4. Material characterization reveals the homogeneous dispersion of 3-6 nm Pd nanoparticles within the MOF-808 matrix. Pd-nano@MOF-808-Pza exhibits excellent catalytic activity in the hydrogenation of unsaturated nitrogen-containing compounds, and other typical reactions, such as the Knoevenagel condensation, Suzuki/Heck cross-coupling, and hydrogen tandem reactions. In addition, density functional theory (DFT) calculations are carried out to elucidate the chelation of Pd2+ ions by Pza on MOF-808 and propose mechanisms of hydrogenation reactions. This work provides an effective reduction catalyst, and more importantly, a single-ion chelation strategy for design and synthesis of metal supported catalysts.

3.
Nanotechnology ; 19(7): 075608, 2008 Feb 20.
Article in English | MEDLINE | ID: mdl-21817645

ABSTRACT

A simple and low-cost method based on a two-step heat treatment of AgNO(3)/SiO(2) film has been developed for fabricating metal Ag nanoring arrays. The as-prepared nanorings have an inner diameter of 70-250 nm and an average wall thickness (namely wire diameter) of approximately 30 nm with a number density of approximately 10(9) cm(-2) on the surface of the SiO(2) matrix. X-ray diffraction (XRD) results reveal that these nanorings exhibit a face-centered cubic crystal structure. Furthermore, a new growth mechanism, namely a molten metal bubble as a self-template, is tentatively proposed for Ag nanorings.

SELECTION OF CITATIONS
SEARCH DETAIL
...