Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters











Publication year range
1.
Colloids Surf B Biointerfaces ; 243: 114154, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39137528

ABSTRACT

This work investigated the range of substitution of two biologically relevant ions, namely Mn2+ and Co2+, into the structure of ß-tricalcium phosphate, as well as their influence on bone cells response. To this aim, ß-TCP was synthesized by solid state reaction in the presence of increasing amount of the substituent ions. The results of the X-ray diffraction analysis reveal that just limited amounts of these ions can enter into the ß-TCP structure: 15 at% and 20 at% for cobalt and manganese, respectively. Substitution provokes aggregation of the micrometric particles and reduction of the lattice constants. In particular, the dimension of the c-parameter exhibits a discontinuity at about 10 at% for both cations, although with different trend. Moreover, Rietveld refinement demonstrates a clear preference of both manganese and cobalt for the octahedral site (V). The influence of these ions on cell response was tested on osteoblast, osteoclast and endothelial cells. The results indicate that the presence of manganese promotes a good osteoblast viability, significantly enhances the expression of osteoblast key genes and the angiogenic process of endothelial cells, while inhibiting osteoclast resorption. At variance, osteoblast viability appears reduced in the presence of Co samples, on which osteoblast genes reach higher expression than on ß-TCP just in a few cases. On the other hand, the results clearly show that cobalt significantly stimulates the angiogenic process and inhibits osteoclast resorption.

2.
Biomater Adv ; 163: 213968, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059113

ABSTRACT

Strontium, cobalt, and manganese ions are present in the composition of bone and useful for bone metabolism, even when combined with calcium phosphate in the composition of biomaterials. Herein we explored the possibility to include these ions in the composition of apatitic materials prepared through the cementitious reaction between ion-substituted calcium phosphate dibasic dihydrate, CaHPO4·2H2O (DCPD) and tetracalcium phosphate, Ca4(PO4)2O (TTCP). The results of the chemical, structural, morphological and mechanical characterization indicate that cobalt and manganese exhibit a greater delaying effect than strontium (about 15 at.%) on the cementitious reaction, even though they are present in smaller amounts within the materials (about 0.8 and 4.5 at.%, respectively). Furthermore, the presence of the foreign ions in the apatitic materials leads to a slight reduction of porosity and to enhancement of compressive strength. The results of biological tests show that the presence of strontium and manganese, as well as calcium, in the apatitic materials cultured in direct contact with human mesenchymal stem cells (hMSCs) stimulates their viability and activity. In contrast, the apatitic material containing cobalt exhibits a lower metabolic activity. All the materials have a positive effect on the expression of Vascular Endothelial Growth Factor (VEGF) and Von Willebrand Factor (vWF). Moreover, the apatitic material containing strontium induces the most significant reduction in the differentiation of preosteoclasts into osteoclasts, demonstrating not only osteogenic and angiogenic properties, but also ability to regulate bone resorption.


Subject(s)
Bone Regeneration , Cobalt , Manganese , Mesenchymal Stem Cells , Osteogenesis , Strontium , Strontium/pharmacology , Strontium/chemistry , Cobalt/chemistry , Humans , Osteogenesis/drug effects , Manganese/chemistry , Manganese/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Bone Regeneration/drug effects , Neovascularization, Physiologic/drug effects , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Vascular Endothelial Growth Factor A/metabolism , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Cell Survival/drug effects , Angiogenesis
3.
Gels ; 10(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38920900

ABSTRACT

Gelatin films are very versatile materials whose properties can be tuned through functionalization with different systems. This work investigates the influence of WO3 nanoparticles on the swelling, barrier, mechanical, and photochromic properties of gelatin films. To this purpose, polyvinylpirrolidone (PVP)-stabilized WO3 nanoparticles were loaded on gelatin films at two different pH values, namely, 4 and 7. The values of swelling and solubility of functionalized films displayed a reduction of around 50% in comparison to those of pristine, unloaded films. In agreement, WO3 nanoparticles provoked a significant decrease in water vapor permeability, whereas the decrease in the values of elastic modulus (from about 2.0 to 0.7 MPa) and stress at break (from about 2.5 to 1.4 MPa) can be ascribed to the discontinuity created by the nanoparticles inside the films. The results of differential scanning calorimetry and X-ray diffraction analysis suggest that interaction of PVP with gelatin reduce gelatin renaturation. No significant differences were found between the samples prepared at pH 4 and 7, whereas crosslinking with glutaraldehyde greatly influenced the properties of gelatin films. Moreover, the incorporation of WO3 nanoparticles in gelatin films, especially in the absence of glutaraldehyde, conferred excellent photochromic properties, inducing the appearance of an intense blue color after a few seconds of light irradiation and providing good resistance to several irradiation cycles.

4.
Pharmaceutics ; 15(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37242586

ABSTRACT

Curcumin has numerous biological activities and pharmaceutical applications related to its ability to inhibit reactive oxygen species. Herein, strontium-substituted monetite (SrDCPA) and strontium-substituted brushite (SrDCPD) were synthesized and further functionalized with curcumin with the aim to develop materials that combine the anti-oxidant properties of the polyphenol, the beneficial role of strontium toward bone tissue, and the bioactivity of calcium phosphates. Adsorption from hydroalcoholic solution increases with time and curcumin concentration, up to about 5-6 wt%, without affecting the crystal structure, morphology, and mechanical response of the substrates. The multi-functionalized substrates exhibit a relevant radical scavenging activity and a sustained release in phosphate buffer. Cell viability, morphology, and expression of the most representative genes were tested for osteoclast seeded in direct contact with the materials and for osteoblast/osteoclast co-cultures. The materials at relatively low curcumin content (2-3 wt%) maintain inhibitory effects on osteoclasts and support the colonization and viability of osteoblasts. The expressions of Alkaline Phosphatase (ALPL), collagen type I alpha 1 chain (COL1A1), and osteocalcin (BGLAP) suggest that curcumin reduces the osteoblast differentiation state but yields encouraging osteoprotegerin/receptor activator for the NFkB factor ligand (OPG/RANKL) ratio.

5.
J Funct Biomater ; 13(3)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35893456

ABSTRACT

The availability of biomaterials able to counteract bacterial colonization is one of the main requirements of functional implants and medical devices. Herein, we functionalized hydroxyapatite (HA) with tungsten oxide (WO3) nanoparticles in the aim to obtain composite materials with improved biological performance. To this purpose, we used HA, as well as HA functionalized with polyacrilic acid (HAPAA) or poly(ethylenimine) (HAPEI), as supports and polyvinylpyrrolidone (PVP) as stabilizing agent for WO3 nanoparticles. The number of nanoparticles loaded on the substrates was determined through Molecular Plasma-Atomic Emission Spectroscopy and is quite small, so it cannot be detected through X-ray diffraction analysis. It increases from HAPAA, to HA, to HAPEI, in agreement with the different values of zeta potential of the different substrates. HRTEM and STEM images show the dimensions of the nanoparticles are very small, less than 1 nm. In physiological solution HA support displays a greater tungsten cumulative release than HAPEI, despite its smaller loaded amount. Indeed, WO3 nanoparticles-functionalized HA exhibits a remarkable antibacterial activity against the Gram-positive Staphylococcus aureus in absence of cytotoxicity, which could be usefully exploited in the biomedical field.

6.
J Funct Biomater ; 13(2)2022 May 24.
Article in English | MEDLINE | ID: mdl-35735920

ABSTRACT

Monetite and brushite are regarded with increasing interest for the preparation of biomaterials for applications in the musculoskeletal system. Herein, we investigated the influence of strontium substitution in the structures of these two phosphates on bone cell response. To achieve this aim, co-cultures of human primary osteoclasts and human osteoblast-like MG63 cells were tested on strontium-substituted monetite and strontium-substituted brushite, as well as on monetite and brushite, as controls. In both structures, strontium substitution for calcium amounted to about 6 at% and provoked enlargement of the cell parameters and morphologic variations. Cumulative release in physiological solution increased linearly over time and was greater from brushite (up to about 160 and 560 mg/L at 14 days for Sr and Ca, respectively) than from monetite (up to about 90 and 250 mg/L at 14 days for Sr and Ca, respectively). The increasing viability of osteoblast-like cells over time, with the different expression level of some typical bone markers, indicates a more pronounced trigger toward osteoblast differentiation and osteoclast inhibition by brushite materials. In particular, the inhibition of cathepsin K and tartrate-resistant acid phosphatase at the gene and morphological levels suggests strontium-substituted brushite can be applied in diseases characterized by excessive bone resorption.

7.
Int J Mol Sci ; 23(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35682677

ABSTRACT

BACKGROUND: Bisphosphonates are widely employed drugs for the treatment of pathologies with high bone resorption, such as osteoporosis, and display a great affinity for calcium ions and apatitic substrates. Here, we aimed to investigate the potentiality of zoledronate functionalized hydroxyapatite nanocrystals (HAZOL) to promote bone regeneration by stimulating adhesion, viability, metabolic activity and osteogenic commitment of human bone marrow derived mesenchymal stromal cells (hMSCs). METHODS: we adopted an advanced three-dimensional (3D) in vitro fracture healing model to study porous scaffolds: hMSCs were seeded onto the scaffolds that, after three days, were cut in halves and unseeded scaffolds were placed between the two halves. Scaffold characterization by X-ray diffraction, transmission and scanning electron microscopy analyses and cell morphology, viability, osteogenic differentiation and extracellular matrix deposition were evaluated after 3, 7 and 10 days of culture. RESULTS: Electron microscopy showed a porous and interconnected structure and a uniform cell layer spread onto scaffolds. Scaffolds were able to support cell growth and cells progressively colonized the whole inserts in absence of cytotoxic effects. Osteogenic commitment and gene expression of hMSCs were enhanced with higher expressions of ALPL, COL1A1, BGLAP, RUNX2 and Osterix genes. CONCLUSION: Although some limitations affect the present study (e.g., the lack of longer experimental times, of mechanical stimulus or pathological microenvironment), the obtained results with the adopted experimental setup suggested that zoledronate functionalized scaffolds (GHAZOL) might sustain not only cell proliferation, but positively influence osteogenic differentiation and activity if employed in bone fracture healing.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Bone Marrow , Bone Marrow Cells , Bone Regeneration , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Mesenchymal Stem Cells/metabolism , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Zoledronic Acid/pharmacology
8.
Polymers (Basel) ; 13(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072936

ABSTRACT

In this paper we used curcumin as a functionalizing agent of gelatin films with the aim to get antioxidant materials with modulated physico-chemical properties. To this aim, we prepared gelatin films at different contents of curcumin up to about 1.2 wt%. The as-prepared films, as well as glutaraldehyde crosslinked films, were submitted to several tests: swelling, water solubility, differential scanning calorimetry, X-ray diffraction, mechanical tests and curcumin release. The radical scavenging activity of the as-prepared films is similar to that of free curcumin, indicating remarkable antioxidant properties. All the other tested properties vary as a function of curcumin content and/or the presence of the crosslinking agent. In particular, the films exhibit sustained curcumin release in different solvents. Thanks to its biocompatibility, biodegradability and lack of antigenicity, gelatin uses span from food processing to packaging and biomaterials. It follows that the modulated properties exhibited by the functionalized materials developed in this work can be usefully employed in different application fields.

9.
Int J Pharm ; 598: 120408, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33647415

ABSTRACT

Gelatin-based films enriched with snail slime are proposed as novel biodegradable and naturally bioadhesive patches for cutaneous drug delivery. Films (thickness range 163-248 µm) were stretchable and they adhered firmly onto the wetted skin, especially those with high amount (70% V/V) of snail slime extract. Fluconazole was selected as model drug and added to films containing the highest amount of snail slime. The presence of Fluconazole (4.53 ± 0.07% w/w) did not modify significantly the mechanical properties, the swelling degree and the bioadhesive performances of the films. Structural investigations demonstrated that the crystalline form III of the drug changed to the amorphous one, forming an amorphous solid dispersion. Moreover, snail slime prevented the drug recrystallization over time. In vitro permeation studies showed that film exhibited a cumulative drug concentration (over 60% in 24 h) similar to that of the control solution containing 20% w/V of ethanol. Fluconazole-loaded gelatin films proved to be effective towards clinical isolates of Candida spp. indicating that the drug maintained its remarkable antifungal activity once formulated into gelatin and snail slime-based films. In conclusion, snail slime, thanks to its peculiar composition, has proved to be responsible of optimal skin adhesion, film flexibility and of the formation of a supersaturating drug delivery system able to increase skin permeation.


Subject(s)
Gelatin , Pharmaceutical Preparations , Administration, Cutaneous , Drug Delivery Systems , Fluconazole
10.
Colloids Surf B Biointerfaces ; 200: 111580, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33493943

ABSTRACT

Multi-functionalization of calcium phosphates to get delivery systems of therapeutic agents is gaining increasing relevance for the development of functional biomaterials aimed to solve problems related to disorders of the muscolo-skeletal system. In this regard, we functionalized Strontium substituted hydroxyapatite (SrHA) with some ß-lactam integrin agonists to develop materials with enhanced properties in promoting cell adhesion and activation of intracellular signaling as well as in counteracting abnormal bone resorption. For this purpose, we selected two monocyclic ß-lactams on the basis of their activities towards specific integrins on promoting cell adhesion and signalling. The amount of ß-lactams loaded on SrHA could be modulated on changing the polarity of the loading solution, from 3.5-24 wt% for compound 1 and from 3.2-8.4 wt% for compound 2. Studies on the release of the ß-lactams from the functionalized SrHA in aqueous medium showed an initial burst followed by a steady-release that ensures a small but constant amount of the compounds over time. The new composites were fully characterized. Co-culture of human primary mesenchymal stem cells (hMSC) and human primary osteoclast (OC) demonstrated that the presence of ß-lactams on SrHA favors hMSC adhesion and viability, as well as differentiation towards osteoblastic lineage. Moreover, the ß-lactams were found to enhance the inhibitory role of Strontium on osteoclast viability and differentiation.


Subject(s)
Durapatite , beta-Lactams , Bone Regeneration , Cell Adhesion , Cell Differentiation , Humans , Hydroxyapatites , Integrins , Strontium/pharmacology
11.
Future Med Chem ; 12(6): 479-491, 2020 03.
Article in English | MEDLINE | ID: mdl-32064939

ABSTRACT

Aim: The pharmaceutical industry is showing renewed interest in therapeutic peptides. Unfortunately, the chemical synthesis of peptides remains very expensive and problematic in terms of environmental sustainability. Hence, making peptides 'greener' has become a new front line for the expansion of peptide market. Results: We developed a mechanochemical solvent-free peptide bond-forming protocol using standard reagents and nanocrystalline hydroxyapatite as a bio-compatible, reusable inorganic base. The reaction was also conducted under ultra-mild, minimal solvent-grinding conditions, using common laboratory equipment. Conclusion: The efficacy of the described protocol was validated with the convenient preparation of endomorphin-1, H-Tyr-Pro-Trp-Phe-NH2, the endogenous ligand of the µ-opioid receptor, currently regarded as a lead for the discovery of painkillers devoid of harmful side effects.


Subject(s)
Durapatite/chemistry , Nanoparticles/chemistry , Oligopeptides/chemical synthesis , Crystallization , Ligands , Molecular Structure , Oligopeptides/chemistry
12.
Int J Biol Macromol ; 143: 126-135, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31805330

ABSTRACT

Snail mucus is an attractive natural substance, which is increasingly used in cosmetic creams and syrups thanks to its emollient, moisturizing, protective and reparative properties. The aim of the present study was to explore the physicochemical properties of chitosan-based films added with snail mucus extracted from Helix Aspersa Muller. To this aim, chitosan films at different content of snail mucus were fabricated by simple solvent casting technique. The results of X-ray diffraction analyses, tensile mechanical tests, Infrared spectroscopy and thermogravimetry demonstrated that snail mucus addition strongly modifies the properties of chitosan films. In particular, it acted like a plasticizer enhancing films extensibility up to ten times and strongly improving their water barrier and bioadhesion properties, with a trend depending on Snail mucus content. Furthermore, it provides the films with antibacterial properties and enhanced cytocompatibility, yielding materials with tailored properties for specific requirements.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Mucus/chemistry , Snails/chemistry , Animals , Anti-Bacterial Agents/chemistry , Cell Line , Cell Survival/drug effects , Chemical Phenomena , Spectrum Analysis , Steam , Thermogravimetry
13.
J Funct Biomater ; 10(2)2019 May 05.
Article in English | MEDLINE | ID: mdl-31060308

ABSTRACT

ß-tricalcium phosphate (ß-TCP) is one of the most common bioceramics, widely applied in bone cements and implants. Herein we synthesized ß-TCP by solid state reaction in the presence of increasing amounts of two biologically active ions, namely strontium and zinc, in order to clarify the structural modifications induced by ionic substitution. The results of X-ray diffraction analysis indicate that zinc can substitute for calcium into a ß-TCP structure up to about 10 at% inducing a reduction of the cell parameters, whereas the substitution occurs up to about 80 at% in the case of strontium, which provokes a linear increase of the lattice constants, and a slight modification into a more symmetric structure. Rietveld refinements and solid-state 31P NMR spectra demonstrate that the octahedral Ca(5) is the site of ß-TCP preferred by the small zinc ion. ATR-FTIR results indicate that zinc substitution provokes a disorder of ß-TCP structure. At variance with the behavior of zinc, strontium completely avoids Ca(5) site even at high concentration, whereas it exhibits a clear preference for Ca(4) site. The infrared absorption bands of ß-TCP show a general shift towards lower wavenumbers on increasing strontium content. Particularly significant is the shift of the infrared symmetric stretching band at 943 cm-1 due to P(1), that is the phosphate more involved in Ca(4) coordination, which further supports the occupancy preference of strontium.

14.
Molecules ; 24(10)2019 May 19.
Article in English | MEDLINE | ID: mdl-31109143

ABSTRACT

3D cylindrical layered scaffolds with anisotropic mechanical properties were prepared according to a new and simple method, which involves gelatin foaming, deposition of foamed strips, in situ crosslinking, strip rolling and lyophilization. Different genipin concentrations were tested in order to obtain strips with different crosslinking degrees and a tunable stability in biological environment. Before lyophilization, the strips were curled in a concentric structure to generate anisotropic spiral-cylindrical scaffolds. The scaffolds displayed significantly higher values of stress at break and of the Young modulus in compression along the longitudinal than the transverse direction. Further improvement of the mechanical properties was achieved by adding strontium-substituted hydroxyapatite (Sr-HA) to the scaffold composition and by increasing genipin concentration. Moreover, composition modulated also water uptake ability and degradation behavior. The scaffolds showed a sustained strontium release, suggesting possible applications for the local treatment of abnormally high bone resorption. This study demonstrates that assembly of layers of different composition can be used as a tool to obtain scaffolds with modulated properties, which can be loaded with drugs or biologically active molecules providing properties tailored upon the needs.


Subject(s)
Drug Delivery Systems/methods , Elastic Modulus , Hydroxyapatites/chemistry , Strontium/administration & dosage , Tissue Scaffolds/chemistry , Anisotropy , Bone and Bones/surgery , Cross-Linking Reagents/chemistry , Drug Liberation , Gelatin/chemistry , Kinetics , Strontium/chemistry , Tissue Engineering/methods
15.
J Cell Physiol ; 234(11): 20046-20056, 2019 11.
Article in English | MEDLINE | ID: mdl-30950062

ABSTRACT

Despite alternatives to autogenous bone graft for spinal fusion have been investigated, it has been shown that osteoconductive materials alone do not give a rate of fusion comparable with autogenous bone. This study analyzed a strontium substituted ß-tricalcium phosphate (Sr-ßTCP) associated with syngeneic, unexpanded, and undifferentiated mesenchymal stem cells from bone marrow (BMSC) or adipose tissue (ADSC) as a new tissue engineering approach for spinal fusion procedures. A posterolateral fusion was performed in 15 ovariectomized (OVX) and 15 sham-operated (SHAM) Inbred rats. Both SHAM and OVX animals were divided into three groups: Sr-ßTCP, Sr-ßTCP + BMCSs, and Sr-ßTCP + ADSCs. Animals were euthanized 8 weeks after surgery and the spines evaluated by manual palpation, micro-CT, and histology. For both SHAM and OVX animals, the fusion tissue in the Sr-ßTCP + BMSCs group was more solid. This effect was significantly higher in OVX animals by comparing the Sr-ßTCP + BMCSs group with Sr-ßTCP + ADSCs. Radiographical score, based on micro-CT 2D image, highlighted that the Sr-ßTCP + BMCSs group presented a similar fusion to Sr-ßTCP and higher than Sr-ßTCP + ADSCs in both SHAM and OVX animals. Micro-CT 3D parameters did not show significant differences among groups. Histological score showed significantly higher fusion in Sr-ßTCP + BMSCs group than Sr-ßTCP and Sr-ßTCP + ADSCs, for both SHAM and OVX animals. In conclusion, our results suggest that addition of BMSCs to a Sr-ßTCP improve bone formation and fusion, both in osteoporotic and nonosteoporotic animal, whereas spinal fusion is not enhanced in rats treated with Sr-ßTCP + ADSCs. Thus, for conducting cells therapy in spinal surgery BMSCs still seems to be a better choice compared with ADSCs.


Subject(s)
Adipose Tissue/drug effects , Bone Marrow/drug effects , Calcium Phosphates/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Strontium/pharmacology , Animals , Bone Regeneration/drug effects , Female , Lumbar Vertebrae/drug effects , Mesenchymal Stem Cell Transplantation/methods , Osteoporosis/drug therapy , Ovariectomy/methods , Rats , Spinal Fusion/methods , Tissue Engineering/methods
16.
J Funct Biomater ; 10(1)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717259

ABSTRACT

Dicalcium phosphate dihydrate (DCPD) is one of the mineral phases indicated as possible precursors of biological apatites and it is widely employed in the preparation of calcium phosphate bone cements. Herein, we investigated the possibility to functionalize DCPD with aspartic acid (ASP) and poly-aspartic acid (PASP), as models of the acidic macromolecules of biomineralized tissues, and studied their influence on DCPD hydrolysis. To this aim, the synthesis of DCPD was performed in aqueous solution in the presence of increasing concentrations of PASP and ASP, whereas the hydrolysis reaction was carried out in physiological solution up to three days. The results indicate that it is possible to prepare DCPD functionalized with PASP up to a polyelectrolyte content of about 2.3 wt%. The increase of PASP content induces crystal aggregation, reduction of the yield of the reaction and of the thermal stability of the synthesized DCPD. Moreover, DCPD samples functionalized with PASP display a slower hydrolysis than pure DCPD. On the other hand, in the explored range of concentrations (up to 10 mM) ASP is not incorporated into DCPD and does not influence its crystallization nor its hydrolysis. At variance, when present in the hydrolysis solution, ASP, and even more PASP, delays the conversion into the more stable phases, octacalcium phosphate and/or hydroxyapatite. The greater influence of PASP on the synthesis and hydrolysis of DCPD can be ascribed to the cooperative action of the carboxylate groups and to its good fit with DCPD structure.

17.
Mater Sci Eng C Mater Biol Appl ; 95: 355-362, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30573259

ABSTRACT

PURPOSE: The purpose of this study was to comparatively investigate the posterolateral fusion rate in ovariectomized (OVX) rats using two new bone graft materials: strontium (Sr) substituted hydroxyapatite (HA) nanocrystals and alendronate (AL) functionalized HA nanocrystals. SrHA was synthesized in presence of different Sr concentrations (SrHA5; SrHA10) and HA-AL nanocrystals at increasing bisphosphonate (BP) content (HA-AL7; HA-AL28). METHODS: A posterolateral spinal fusion model in twenty-five Sham operated and in twenty-five OVX female rats was used and materials were bilaterally implanted between transverse processes of lumbar vertebrae. Sham and OVX animals were divided in five groups depending on the material: HA, SrHA5, SrHA10, HA-AL7 and HA-AL28. The assessment of bone fusion was carried out by µCT, histology and histomorphometry. RESULTS: Some gaps between the transverse processes were observed by µCT in OVXHA group, while they were not present in all the other groups. These results were consistent with the histomorphometrical analyses showing that in OVX animals SrHA and HA-AL materials displayed significantly higher BV/TV and Tb.Th and significantly lower Tb.N and Tb.Sp in comparison with HA alone. CONCLUSIONS: Results of this study suggest that in spinal fusion the incorporation of bioactive ions or drugs as Sr and AL improves the biological performance of HA representing a promising strategy especially in osteoporosis patients with high risks of spinal fusion failure. Results also suggest the existence of a Sr and AL dose response effect and that HA containing the highest AL dose could be the candidate biomaterial for spinal fusion in osteoporotic subjects.


Subject(s)
Alendronate/chemistry , Arthrodesis/methods , Durapatite/chemistry , Lumbar Vertebrae/pathology , Lumbar Vertebrae/surgery , Strontium/chemistry , Animals , Biocompatible Materials/chemistry , Female , Ovariectomy , Rats
18.
Int J Pharm ; 554: 245-255, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30423416

ABSTRACT

In this study, we loaded a biomimetic calcium phosphate bone cement (CPC) with relatively high amounts of a bisphosphonate through the use of Solid Lipid Microparticles (MPs) and investigated bone cells response to the composite cements. 10, 20 and 30% w/w of Alendronate (AL) were successfully introduced into microparticles of Cutina HR and Precirol, which were prepared by means of spray-congealing technique. Addition of AL-loaded MPs to the cement composition provoked a lengthening of the setting and of the hardening processes. However, setting times were still in a range useful for clinical applications, except for the cements at the highest Alendronate content. The composite cements displayed a sustained drug release over time. Cements with the best performances in terms of setting, hardening, mechanical properties and drug release were submitted to in vitro tests using a co-culture model of osteoblast and osteoclast. The results showed that the use of MPs to enrich the cement composition with Alendronate provides materials able to inhibit osteoclast viability and activity, while promoting osteoblast viability and earlier differentiation, indicating that the MPs-cements are good delivery systems for bisphosphonates.


Subject(s)
Alendronate/administration & dosage , Bone Cements/chemistry , Bone Density Conservation Agents/administration & dosage , Calcium Phosphates/chemistry , Alendronate/chemistry , Alendronate/pharmacology , Biomimetic Materials/chemistry , Bone Density Conservation Agents/chemistry , Bone Density Conservation Agents/pharmacology , Cell Differentiation/drug effects , Cell Survival/drug effects , Chemistry, Pharmaceutical/methods , Coculture Techniques , Delayed-Action Preparations , Drug Liberation , Humans , Lipids , Microspheres , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoclasts/cytology , Osteoclasts/drug effects
19.
ACS Biomater Sci Eng ; 5(7): 3429-3439, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-33405727

ABSTRACT

Multifunctionalized biomaterials with enhanced bone antiresorptive properties were obtained through adsorption of a bisphosphonate, risedronate, on hydroxyapatite (HA) nanocrystals functionalized with zinc ions and polyethylenimine (PEI). Zn incorporation into the HA structure amounts to about 8 atom %, whereas the PEI content of the bifunctionalized material ZnHAPEIBP is about 5.9 wt %. The mechanism of adsorption and release of the bisphosphonate on ZnHAPEI is compared with that on ZnHA: risedronate adsorption isotherm on ZnHA is a Langmuir type, whereas the isotherm of adsorption on ZnHAPEI is better fitted with a Freundlich model and involved a higher amount of adsorbed risedronate. In vitro cell tests were carried out with a coculture model of osteoblasts and osteoclasts using a model simulating oxidative stress and consequent cellular senescence and osteoporosis by the addition of H2O2. The conditions utilized in the coculture model strongly affect osteoblast behavior. The results show that the composite materials allow an increase in osteoblast viability and recover impairment, revealing a novel characteristic of risedronate that is able to counteract the negative effects of oxidative stress when associated with differently functionalized samples. Both PEI and the bisphosphonate reduce osteoclast viability. Moreover, PEI, and even more risedronate, exerts an inhibitory effect on osteoclast activity.

SELECTION OF CITATIONS
SEARCH DETAIL