Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Am Soc Mass Spectrom ; 35(7): 1539-1549, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38864778

ABSTRACT

Ion mobility spectrometry (IMS) is a gas-phase analytical technique that separates ions with different sizes and shapes and is compatible with mass spectrometry (MS) to provide an additional separation dimension. The rapid nature of the IMS separation combined with the high sensitivity of MS-based detection and the ability to derive structural information on analytes in the form of the property collision cross section (CCS) makes IMS particularly well-suited for characterizing complex samples in -omics applications. In such applications, the quality of CCS from IMS measurements is critical to confident annotation of the detected components in the complex -omics samples. However, most IMS instrumentation in mainstream use requires calibration to calculate CCS from measured arrival times, with the most notable exception being drift tube IMS measurements using multifield methods. The strategy for calibrating CCS values, particularly selection of appropriate calibrants, has important implications for CCS accuracy, reproducibility, and transferability between laboratories. The conventional approach to CCS calibration involves explicitly defining calibrants ahead of data acquisition and crucially relies upon availability of reference CCS values. In this work, we present a novel reference-free approach to CCS calibration which leverages trends among putatively identified features and computational CCS prediction to conduct calibrations post-data acquisition and without relying on explicitly defined calibrants. We demonstrated the utility of this reference-free CCS calibration strategy for proteomics application using high-resolution structures for lossless ion manipulations (SLIM)-based IMS-MS. We first validated the accuracy of CCS values using a set of synthetic peptides and then demonstrated using a complex peptide sample from cell lysate.


Subject(s)
Ion Mobility Spectrometry , Mass Spectrometry , Proteomics , Ion Mobility Spectrometry/methods , Proteomics/methods , Proteomics/standards , Calibration , Mass Spectrometry/methods , Peptides/analysis , Peptides/chemistry , Reproducibility of Results , Humans
2.
Proteomics ; 24(12-13): e2200436, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438732

ABSTRACT

Ion mobility spectrometry-mass spectrometry (IMS-MS or IM-MS) is a powerful analytical technique that combines the gas-phase separation capabilities of IM with the identification and quantification capabilities of MS. IM-MS can differentiate molecules with indistinguishable masses but different structures (e.g., isomers, isobars, molecular classes, and contaminant ions). The importance of this analytical technique is reflected by a staged increase in the number of applications for molecular characterization across a variety of fields, from different MS-based omics (proteomics, metabolomics, lipidomics, etc.) to the structural characterization of glycans, organic matter, proteins, and macromolecular complexes. With the increasing application of IM-MS there is a pressing need for effective and accessible computational tools. This article presents an overview of the most recent free and open-source software tools specifically tailored for the analysis and interpretation of data derived from IM-MS instrumentation. This review enumerates these tools and outlines their main algorithmic approaches, while highlighting representative applications across different fields. Finally, a discussion of current limitations and expectable improvements is presented.


Subject(s)
Algorithms , Ion Mobility Spectrometry , Mass Spectrometry , Software , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Proteomics/methods , Metabolomics/methods , Humans
3.
Nat Chem Biol ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302607

ABSTRACT

The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.

4.
J Proteome Res ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421884

ABSTRACT

Proteoforms, the different forms of a protein with sequence variations including post-translational modifications (PTMs), execute vital functions in biological systems, such as cell signaling and epigenetic regulation. Advances in top-down mass spectrometry (MS) technology have permitted the direct characterization of intact proteoforms and their exact number of modification sites, allowing for the relative quantification of positional isomers (PI). Protein positional isomers refer to a set of proteoforms with identical total mass and set of modifications, but varying PTM site combinations. The relative abundance of PI can be estimated by matching proteoform-specific fragment ions to top-down tandem MS (MS2) data to localize and quantify modifications. However, the current approaches heavily rely on manual annotation. Here, we present IsoForma, an open-source R package for the relative quantification of PI within a single tool. Benchmarking IsoForma's performance against two existing workflows produced comparable results and improvements in speed. Overall, IsoForma provides a streamlined process for quantifying PI, reduces the analysis time, and offers an essential framework for developing customized proteoform analysis workflows. The software is open source and available at https://github.com/EMSL-Computing/isoforma-lib.

5.
Plant Direct ; 7(11): e545, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37965197

ABSTRACT

Climate change is globally affecting rainfall patterns, necessitating the improvement of drought tolerance in crops. Sorghum bicolor is a relatively drought-tolerant cereal. Functional stay-green sorghum genotypes can maintain green leaf area and efficient grain filling during terminal post-flowering water deprivation, a period of ~10 weeks. To obtain molecular insights into these characteristics, two drought-tolerant genotypes, BTx642 and RTx430, were grown in replicated control and terminal post-flowering drought field plots in California's Central Valley. Photosynthetic, photoprotective, and water dynamics traits were quantified and correlated with metabolomic data collected from leaves, stems, and roots at multiple timepoints during control and drought conditions. Physiological and metabolomic data were then compared to longitudinal RNA sequencing data collected from these two genotypes. The unique metabolic and transcriptomic response to post-flowering drought in sorghum supports a role for the metabolite galactinol in controlling photosynthetic activity through regulating stomatal closure in post-flowering drought. Additionally, in the functional stay-green genotype BTx642, photoprotective responses were specifically induced in post-flowering drought, supporting a role for photoprotection in the molecular response associated with the functional stay-green trait. From these insights, new pathways are identified that can be targeted to maximize yields under growth conditions with limited water.

6.
Anal Chem ; 95(25): 9428-9431, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37307589

ABSTRACT

Analysis of ion mobility spectrometry (IMS) data has been challenging and limited the full utility of these measurements. Unlike liquid chromatography-mass spectrometry, where a plethora of tools with well-established algorithms exist, the incorporation of the additional IMS dimension requires upgrading existing computational pipelines and developing new algorithms to fully exploit the advantages of the technology. We have recently reported MZA, a new and simple mass spectrometry data structure based on the broadly supported HDF5 format and created to facilitate software development. While this format is inherently supportive of application development, the availability of core libraries in popular programming languages with standard mass spectrometry utilities will facilitate fast software development and broader adoption of the format. To this end, we present a Python package, mzapy, for efficient extraction and processing of mass spectrometry data in the MZA format, especially for complex data containing ion mobility spectrometry dimension. In addition to raw data extraction, mzapy contains supporting utilities enabling tasks including calibration, signal processing, peak finding, and generating plots. Being implemented in pure Python and having minimal and largely standardized dependencies makes mzapy uniquely suited to application development in the multiomics domain. The mzapy package is free and open-source, includes comprehensive documentation, and is structured to support future extension to meet the evolving needs of the MS community. The software source code is freely available at https://github.com/PNNL-m-q/mzapy.

7.
Molecules ; 28(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110719

ABSTRACT

The unambiguous identification of lipids is a critical component of lipidomics studies and greatly impacts the interpretation and significance of analyses as well as the ultimate biological understandings derived from measurements. The level of structural detail that is available for lipid identifications is largely determined by the analytical platform being used. Mass spectrometry (MS) coupled with liquid chromatography (LC) is the predominant combination of analytical techniques used for lipidomics studies, and these methods can provide fairly detailed lipid identification. More recently, ion mobility spectrometry (IMS) has begun to see greater adoption in lipidomics studies thanks to the additional dimension of separation that it provides and the added structural information that can support lipid identification. At present, relatively few software tools are available for IMS-MS lipidomics data analysis, which reflects the still limited adoption of IMS as well as the limited software support. This fact is even more pronounced for isomer identifications, such as the determination of double bond positions or integration with MS-based imaging. In this review, we survey the landscape of software tools that are available for the analysis of IMS-MS-based lipidomics data and we evaluate lipid identifications produced by these tools using open-access data sourced from the peer-reviewed lipidomics literature.


Subject(s)
Ion Mobility Spectrometry , Lipidomics , Lipidomics/methods , Lipids/analysis , Mass Spectrometry/methods , Software
8.
Nat Commun ; 14(1): 2461, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117207

ABSTRACT

Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.


Subject(s)
Algorithms , Metabolomics , Mass Spectrometry/methods , Metabolomics/methods , Chromatography, Liquid/methods , Ion Mobility Spectrometry
9.
Commun Chem ; 6(1): 74, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37076550

ABSTRACT

Lipids play essential roles in many biological processes and disease pathology, but unambiguous identification of lipids is complicated by the presence of multiple isomeric species differing by fatty acyl chain length, stereospecifically numbered (sn) position, and position/stereochemistry of double bonds. Conventional liquid chromatography-mass spectrometry (LC-MS/MS) analyses enable the determination of fatty acyl chain lengths (and in some cases sn position) and number of double bonds, but not carbon-carbon double bond positions. Ozone-induced dissociation (OzID) is a gas-phase oxidation reaction that produces characteristic fragments from lipids containing double bonds. OzID can be incorporated into ion mobility spectrometry (IMS)-MS instruments for the structural characterization of lipids, including additional isomer separation and confident assignment of double bond positions. The complexity and repetitive nature of OzID data analysis and lack of software tool support have limited the application of OzID for routine lipidomics studies. Here, we present an open-source Python tool, LipidOz, for the automated determination of lipid double bond positions from OzID-IMS-MS data, which employs a combination of traditional automation and deep learning approaches. Our results demonstrate the ability of LipidOz to robustly assign double bond positions for lipid standard mixtures and complex lipid extracts, enabling practical application of OzID for future lipidomics.

11.
J Proteome Res ; 22(2): 508-513, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36414245

ABSTRACT

Modern mass spectrometry-based workflows employing hybrid instrumentation and orthogonal separations collect multidimensional data, potentially allowing deeper understanding in omics studies through adoption of artificial intelligence methods. However, the large volume of these rich spectra challenges existing data storage and access technologies, therefore precluding informatics advancements. We present MZA (pronounced m-za), the mass-to-charge (m/z) generic data storage and access tool designed to facilitate software development and artificial intelligence research in multidimensional mass spectrometry measurements. Composed of a data conversion tool and a simple file structure based on the HDF5 format, MZA provides easy, cross-platform and cross-programming language access to raw MS-data, enabling fast development of new tools in data science programming languages such as Python and R. The software executable, example MS-data and example Python and R scripts are freely available at https://github.com/PNNL-m-q/mza.


Subject(s)
Artificial Intelligence , Software , Mass Spectrometry/methods , Programming Languages , Information Storage and Retrieval
12.
Anal Chem ; 94(15): 5909-5917, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35380435

ABSTRACT

SARS-CoV-2 cellular infection is mediated by the heavily glycosylated spike protein. Recombinant versions of the spike protein and the receptor-binding domain (RBD) are necessary for seropositivity assays and can potentially serve as vaccines against viral infection. RBD plays key roles in the spike protein's structure and function, and thus, comprehensive characterization of recombinant RBD is critically important for biopharmaceutical applications. Liquid chromatography coupled to mass spectrometry has been widely used to characterize post-translational modifications in proteins, including glycosylation. Most studies of RBDs were performed at the proteolytic peptide (bottom-up proteomics) or released glycan level because of the technical challenges in resolving highly heterogeneous glycans at the intact protein level. Herein, we evaluated several online separation techniques: (1) C2 reverse-phase liquid chromatography (RPLC), (2) capillary zone electrophoresis (CZE), and (3) acrylamide-based monolithic hydrophilic interaction chromatography (HILIC) to separate intact recombinant RBDs with varying combinations of glycosylations (glycoforms) for top-down mass spectrometry (MS). Within the conditions we explored, the HILIC method was superior to RPLC and CZE at separating RBD glycoforms, which differ significantly in neutral glycan groups. In addition, our top-down analysis readily captured unexpected modifications (e.g., cysteinylation and N-terminal sequence variation) and low abundance, heavily glycosylated proteoforms that may be missed by using glycopeptide data alone. The HILIC top-down MS platform holds great potential in resolving heterogeneous glycoproteins for facile comparison of biosimilars in quality control applications.


Subject(s)
Biosimilar Pharmaceuticals , COVID-19 , Chromatography, Liquid , Chromatography, Reverse-Phase/methods , Glycoproteins/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Polysaccharides/analysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
13.
J Proteome Res ; 21(3): 798-807, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34382401

ABSTRACT

The ability to improve the data quality of ion mobility-mass spectrometry (IM-MS) measurements is of great importance for enabling modular and efficient computational workflows and gaining better qualitative and quantitative insights from complex biological and environmental samples. We developed the PNNL PreProcessor, a standalone and user-friendly software housing various algorithmic implementations to generate new MS-files with enhanced signal quality and in the same instrument format. Different experimental approaches are supported for IM-MS based on Drift-Tube (DT) and Structures for Lossless Ion Manipulations (SLIM), including liquid chromatography (LC) and infusion analyses. The algorithms extend the dynamic range of the detection system, while reducing file sizes for faster and memory-efficient downstream processing. Specifically, multidimensional smoothing improves peak shapes of poorly defined low-abundance signals, and saturation repair reconstructs the intensity profile of high-abundance peaks from various analyte types. Other functionalities are data compression and interpolation, IM demultiplexing, noise filtering by low intensity threshold and spike removal, and exporting of acquisition metadata. Several advantages of the tool are illustrated, including an increase of 19.4% in lipid annotations and a two-times faster processing of LC-DT IM-MS data-independent acquisition spectra from a complex lipid extract of a standard human plasma sample. The software is freely available at https://omics.pnl.gov/software/pnnl-preprocessor.


Subject(s)
Ion Mobility Spectrometry , Lipids , Chromatography, Liquid/methods , Humans , Ion Mobility Spectrometry/methods , Ions , Mass Spectrometry/methods , Workflow
14.
Bioinformatics ; 37(22): 4193-4201, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34145874

ABSTRACT

MOTIVATION: Ion mobility spectrometry (IMS) separations are increasingly used in conjunction with mass spectrometry (MS) for separation and characterization of ionized molecular species. Information obtained from IMS measurements includes the ion's collision cross section (CCS), which reflects its size and structure and constitutes a descriptor for distinguishing similar species in mixtures that cannot be separated using conventional approaches. Incorporating CCS into MS-based workflows can improve the specificity and confidence of molecular identification. At present, there is no automated, open-source pipeline for determining CCS of analyte ions in both targeted and untargeted fashion, and intensive user-assisted processing with vendor software and manual evaluation is often required. RESULTS: We present AutoCCS, an open-source software to rapidly determine CCS values from IMS-MS measurements. We conducted various IMS experiments in different formats to demonstrate the flexibility of AutoCCS for automated CCS calculation: (i) stepped-field methods for drift tube-based IMS (DTIMS), (ii) single-field methods for DTIMS (supporting two calibration methods: a standard and a new enhanced method) and (iii) linear calibration for Bruker timsTOF and non-linear calibration methods for traveling wave based-IMS in Waters Synapt and Structures for Lossless Ion Manipulations. We demonstrated that AutoCCS offers an accurate and reproducible determination of CCS for both standard and unknown analyte ions in various IMS-MS platforms, IMS-field methods, ionization modes and collision gases, without requiring manual processing. AVAILABILITY AND IMPLEMENTATION: https://github.com/PNNL-Comp-Mass-Spec/AutoCCS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Demo datasets are publicly available at MassIVE (Dataset ID: MSV000085979).


Subject(s)
Ion Mobility Spectrometry , Software , Mass Spectrometry/methods , Ions
15.
J Proteome Res ; 20(4): 2014-2020, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33661636

ABSTRACT

Visual examination of mass spectrometry data is necessary to assess data quality and to facilitate data exploration. Graphics provide the means to evaluate spectral properties, test alternative peptide/protein sequence matches, prepare annotated spectra for publication, and fine-tune parameters during wet lab procedures. Visual inspection of LC-MS data is constrained by proteomics visualization software designed for particular workflows or vendor-specific tools without open-source code. We built PSpecteR, an open-source and interactive R Shiny web application for visualization of LC-MS data, with support for several steps of proteomics data processing, including reading various mass spectrometry files, running open-source database search engines, labeling spectra with fragmentation patterns, testing post-translational modifications, plotting where identified fragments map to reference sequences, and visualizing algorithmic output and metadata. All figures, tables, and spectra are exportable within one easy-to-use graphical user interface. Our current software provides a flexible and modern R framework to support fast implementation of additional features. The open-source code is readily available (https://github.com/EMSL-Computing/PSpecteR), and a PSpecteR Docker container (https://hub.docker.com/r/emslcomputing/pspecter) is available for easy local installation.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Chromatography, Liquid , Proteins , Software
16.
J Am Soc Mass Spectrom ; 32(1): 225-236, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33126794

ABSTRACT

Structures for lossless ion manipulations (SLIM) have recently enabled a powerful implementation of traveling wave ion mobility spectrometry (TWIMS) for ultrahigh resolution separations; however, experimental parameters have not been optimized, and potential significant gains may be feasible. Most TWIMS separations have utilized square-shaped waveforms applied by time-dependent voltage stepping across repeating sets of electrodes, but alternative waveforms may provide further improvements to resolution. Here, we characterize five waveforms (including square and sine) in terms of their transmission efficiency, IMS resolution, and resolving power, and explore the effects of TW amplitude and speed on the performance of each. We found, consistent with previous work, separations were generally improved with higher TW amplitudes, moderately improved by lower speeds (limited by ion "surfing" with the waves), and found decreases in signal intensity at the extremes of operating conditions. The triangle and asymmetric "ramp forward" shaped profiles were found to provide modestly greater resolution and resolving power, an observation we tentatively attribute to their relatively uniform fields and minimal low-field regions.

17.
Front Bioeng Biotechnol ; 8: 603488, 2020.
Article in English | MEDLINE | ID: mdl-33425868

ABSTRACT

Targeted proteomics is a mass spectrometry-based protein quantification technique with high sensitivity, accuracy, and reproducibility. As a key component in the multi-omics toolbox of systems biology, targeted liquid chromatography-selected reaction monitoring (LC-SRM) measurements are critical for enzyme and pathway identification and design in metabolic engineering. To fulfill the increasing need for analyzing large sample sets with faster turnaround time in systems biology, high-throughput LC-SRM is greatly needed. Even though nanoflow LC-SRM has better sensitivity, it lacks the speed offered by microflow LC-SRM. Recent advancements in mass spectrometry instrumentation significantly enhance the scan speed and sensitivity of LC-SRM, thereby creating opportunities for applying the high speed of microflow LC-SRM without losing peptide multiplexing power or sacrificing sensitivity. Here, we studied the performance of microflow LC-SRM relative to nanoflow LC-SRM by monitoring 339 peptides representing 132 enzymes in Pseudomonas putida KT2440 grown on various carbon sources. The results from the two LC-SRM platforms are highly correlated. In addition, the response curve study of 248 peptides demonstrates that microflow LC-SRM has comparable sensitivity for the majority of detected peptides and better mass spectrometry signal and chromatography stability than nanoflow LC-SRM.

18.
Mass Spectrom Rev ; 38(3): 291-320, 2019 05.
Article in English | MEDLINE | ID: mdl-30707468

ABSTRACT

Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

19.
Int J Mass Spectrom ; 427: 91-99, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29706793

ABSTRACT

The mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can yield erroneous results if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flight MS. In this method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases for highly saturated species and dynamic range increased by 1-2 orders of magnitude for peptides in a blood serum sample.

20.
Chem Sci ; 8(11): 7724-7736, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29568436

ABSTRACT

The confident identification of metabolites and xenobiotics in biological and environmental studies is an analytical challenge due to their immense dynamic range, vast chemical space and structural diversity. Ion mobility spectrometry (IMS) is widely used for small molecule analyses since it can separate isomeric species and be easily coupled with front end separations and mass spectrometry for multidimensional characterizations. However, to date IMS metabolomic and exposomic studies have been limited by an inadequate number of accurate collision cross section (CCS) values for small molecules, causing features to be detected but not confidently identified. In this work, we utilized drift tube IMS (DTIMS) to directly measure CCS values for over 500 small molecules including primary metabolites, secondary metabolites and xenobiotics. Since DTIMS measurements do not need calibrant ions or calibration like some other IMS techniques, they avoid calibration errors which can cause problems in distinguishing structurally similar molecules. All measurements were performed in triplicate in both positive and negative polarities with nitrogen gas and seven different electric fields, so that relative standard deviations (RSD) could be assessed for each molecule and structural differences studied. The primary metabolites analyzed to date have come from key metabolism pathways such as glycolysis, the pentose phosphate pathway and the tricarboxylic acid cycle, while the secondary metabolites consisted of classes such as terpenes and flavonoids, and the xenobiotics represented a range of molecules from antibiotics to polycyclic aromatic hydrocarbons. Different CCS trends were observed for several of the diverse small molecule classes and when urine features were matched to the database, the addition of the IMS dimension greatly reduced the possible number of candidate molecules. This CCS database and structural information are freely available for download at http://panomics.pnnl.gov/metabolites/ with new molecules being added frequently.

SELECTION OF CITATIONS
SEARCH DETAIL
...