Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 835: 155560, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35489488

ABSTRACT

Monitoring solute fluxes in water quality studies is essential to reveal potential ecosystem disturbances, and is particularly important in Andean headwater catchments as they are the main sources of water for downstream populations. However, such studies have mainly focused on organic matter and nutrients, disregarding other solutes that can threaten water quality (e.g. arsenic, lead, calcium or magnesium). Additionally, routine low-resolution (weekly or monthly) sampling schemes may overlook important solute dynamics. Therefore, we collected water samples every four hours for the analysis of twenty-four solutes in a pristine tropical Andean páramo catchment. Solute fluxes were calculated using five different methods. The 4-hourly data set was filtered to test for an optimum sampling frequency without compromising export rates. Based on the available 4-hourly data, the results showed that the interpolation export method was best suited, due to a weak correlation with discharges. Of the twenty-four solutes analyzed, Dissolved Organic Carbon (DOC), Total Nitrogen bound (TNb), Si, Ca, Mg, K, and Na presented the highest input rates (with DOC = 4.167E+08 mEq km-2 yr-1 and Si = 1.729E+07 mEq km-2 yr-1) and export rates (with DOC = 2.686E+08 mEq km-2 yr-1 and Si = 2.953E+08 mEq km-2 yr-1). Moreover, DOC, TNb, NH4-N, NO2-N, NO3-N, PO4, Al, B, Cu, Fe, Zn, As, Cd, Cr, Pb, and V presented more input than export, while Ca, K, Mg, Na, Rb, Si, Sr, and Ba presented more export than input (geogenic sources). Filtered sampling frequencies demonstrated that a minimum of daily grab samples would be required to obtain reliable export rates with differences consistently below 10%, when compared to the 4-hourly solute export. These findings can be particularly useful for the implementation of long-term monitoring programs at low cost, and they provide high-quality information, for the first time, on biogeochemical budgets in a pristine páramo catchment.


Subject(s)
Ecosystem , Environmental Monitoring , Carbon/analysis , Nitrogen/analysis , Water Quality
2.
Data Brief ; 38: 107277, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34430683

ABSTRACT

Global bottled water consumption has largely increased (14.35 billion gallons in 2020) [1], [2], [3], [4], [5] during the last decade since consumers are demanding healthier and safer forms of rehydration. Bottled water sources are normally labeled as mountainous and pristine mineral springs (fed by rainfall and snow/glacier melting processes), deep groundwater wells or industrial purified water. The advent of numerous international and national-based bottled water brands has simultaneously raised a worldwide awareness related to the water source and chemical content traceability [6]. Here, we present the first database of stable isotope compositions and reported chemical concentrations from imported and national-based bottled waters in Costa Rica. In total, 45 bottled waters produced in Costa Rica and 31 imported from USA, Europe, Oceania, and other countries of Central America were analyzed for δ18O, δ2H, and d-excess. Chemical compositions were obtained from available bottle labels. National-based bottle waters ranged from -2.47‰ to -10.65‰ in δ18O and from -10.4‰ to -78.0‰ in δ2H, while d-excess varied from +4.2‰ up to +17.0‰. International bottle waters ranged between -2.21‰ and -11.03‰ in δ18O and from -11.3‰ up to -76.0‰ in δ2H, while d-excess varied from +5.0‰ up to +19.1‰. In Costa Rica, only 19% of the brands reported chemical parameters such as Na+, K+, Ca+2, Mg+2, F-, Cl-, NO3 -, SO4 -2, CO3 -2, SiO2, dry residue, and pH; whereas 27% of the international products reported similar parameters. The absence of specific geographic coordinates or water source origin limited a spatial analysis to validate bottled water isotope compositions versus available isoscapes in Costa Rica [7]. This database highlights the potential and relevance of the use of water stable isotope compositions to improve the traceability of bottled water sources and the urgent need of more robust legislation in order to provide detailed information (i.e., water source, chemical composition, purification processes) to the final consumers.

3.
Isotopes Environ Health Stud ; 56(5-6): 606-623, 2020.
Article in English | MEDLINE | ID: mdl-32835532

ABSTRACT

Water use by anthropogenic activities in the face of climate change invokes a better understanding of headwater sources and lowland urban water allocations. Here, we constrained a Bayesian mixing model with stable isotope data (2018-2019) in rainfall (N = 704), spring water (N = 96), and surface water (N = 94) with seasonal isotope sampling (wet and dry seasons) of an urban aqueduct (N = 215) in the Central Valley of Costa Rica. Low δ 18O rainfall compositions corresponded to the western boundary of the study area, whereas high values were reported to the northeastern limit, reflecting the influence of moisture transport from the Caribbean domain coupled with strong orographic effects over the Pacific slope. The latter is well-depicted in the relative rainfall contributions (west versus east) in two headwater systems: (a) spring (68.7 ± 3.4 %, west domain) and (b) stream (55.8 ± 3.9 %, east domain). The aqueduct exhibited a spatial predominance of spring water and surface water during a normal wet season (78.7 %), whereas deep groundwater and spring water were fundamental sources for the aqueduct in the dry season (69.4 %). Our tracer-based methodology can help improve aqueduct management practices in changing climate, including optimal water allocation and reduced evaporative losses in the dry season.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Models, Theoretical , Rain/chemistry , Rivers/chemistry , Water Resources/supply & distribution , Bayes Theorem , Caribbean Region , Cities , Climate Change , Costa Rica , Deuterium/analysis , Oxygen Isotopes/analysis , Seasons , Water Cycle
4.
Nat Commun ; 10(1): 4321, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31541090

ABSTRACT

The Mesoamerican and Caribbean (MAC) region is characterized by tropical cyclones (TCs), strong El Niño-Southern Oscillation events, and climate variability that bring unique hazards to socio-ecological systems. Here we report the first characterization of the isotopic evolution of a TC (Hurricane Otto, 2016) in the MAC region. We use long-term daily rainfall isotopes from Costa Rica and event-based sampling of Hurricanes Irma and Maria (2017), to underpin the dynamical drivers of TC isotope ratios. During Hurricane Otto, rainfall exhibited a large isotopic range, comparable to the annual isotopic cycle. As Hurricane Otto organized into a Category 3, rapid isotopic depletion coupled with a decrease in d-excess indicates efficient isotopic fractionation within ~200 km SW of the warm core. Our results shed light on key processes governing rainfall isotope ratios in the MAC region during continental and maritime TC tracks, with applications to the interpretation of paleo-hydroclimate across the tropics.

SELECTION OF CITATIONS
SEARCH DETAIL