Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(9): 093603, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36930901

ABSTRACT

Solid-state spin defects are promising quantum sensors for a large variety of sensing targets. Some of these defects couple appreciably to strain in the host material. We propose to use this strain coupling for mechanically mediated dispersive single-shot spin readout by an optomechanically induced transparency measurement. Surprisingly, the estimated measurement times for negatively charged silicon-vacancy defects in diamond are an order of magnitude shorter than those for single-shot optical fluorescence readout. Our scheme can also be used for general parameter-estimation metrology and offers a higher sensitivity than conventional schemes using continuous position detection.

2.
Phys Rev Lett ; 129(8): 087701, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36053708

ABSTRACT

Ohm's law describes the proportionality of the current density and electric field. In solid-state conductors, Ohm's law emerges due to electron scattering processes that relax the electrical current. Here, we use nitrogen-vacancy center magnetometry to directly image the local breakdown of Ohm's law in a narrow constriction fabricated in a high mobility graphene monolayer. Ohmic flow is visible at room temperature as current concentration on the constriction edges, with flow profiles entirely determined by sample geometry. However, as the temperature is lowered below 200 K, the current concentrates near the constriction center. The change in the flow pattern is consistent with a crossover from diffusive to viscous electron transport dominated by electron-electron scattering processes that do not relax current.

3.
ACS Omega ; 7(35): 31544-31550, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36092615

ABSTRACT

Nanostructuring of a bulk material is used to change its mechanical, optical, and electronic properties and to enable many new applications. We present a scalable fabrication technique that enables the creation of densely packed diamond nanopillars for quantum technology applications. The process yields tunable feature sizes without the employment of lithographic techniques. High-aspect-ratio pillars are created through oxygen-plasma etching of diamond with a dewetted palladium film as an etch mask. We demonstrate an iterative renewal of the palladium etch mask, by which the initial mask thickness is not the limiting factor for the etch depth. Following the process, 300-400 million densely packed 100 nm wide and 1 µm tall diamond pillars were created on a 3 × 3 mm2 diamond sample. The fabrication technique is tailored specifically to enable applications and research involving quantum coherent defect center spins in diamond, such as nitrogen-vacancy (NV) centers, which are widely used in quantum science and engineering. To demonstrate the compatibility of our technique with quantum sensing, NV centers are created in the nanopillar sidewalls and are used to sense 1H nuclei in liquid wetting the nanostructured surface. This nanostructuring process is an important element for enabling the wide-scale implementation of NV-driven magnetic resonance imaging or NV-driven NMR.

4.
Nano Lett ; 17(3): 1496-1503, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28146361

ABSTRACT

Nanomechanical sensors and quantum nanosensors are two rapidly developing technologies that have diverse interdisciplinary applications in biological and chemical analysis and microscopy. For example, nanomechanical sensors based upon nanoelectromechanical systems (NEMS) have demonstrated chip-scale mass spectrometry capable of detecting single macromolecules, such as proteins. Quantum nanosensors based upon electron spins of negatively charged nitrogen-vacancy (NV) centers in diamond have demonstrated diverse modes of nanometrology, including single molecule magnetic resonance spectroscopy. Here, we report the first step toward combining these two complementary technologies in the form of diamond nanomechanical structures containing NV centers. We establish the principles for nanomechanical sensing using such nanospin-mechanical sensors (NSMS) and assess their potential for mass spectrometry and force microscopy. We predict that NSMS are able to provide unprecedented AC force images of cellular biomechanics and to not only detect the mass of a single macromolecule but also image its distribution. When combined with the other nanometrology modes of the NV center, NSMS potentially offer unparalleled analytical power at the nanoscale.

5.
Nat Nanotechnol ; 11(8): 700-5, 2016 08.
Article in English | MEDLINE | ID: mdl-27136130

ABSTRACT

High-spatial-resolution magnetic imaging has driven important developments in fields ranging from materials science to biology. However, to uncover finer details approaching the nanoscale with greater sensitivity requires the development of a radically new sensor technology. The nitrogen-vacancy (NV) defect in diamond has emerged as a promising candidate for such a sensor on the basis of its atomic size and quantum-limited sensing capabilities. It has remained an outstanding challenge to implement the NV centre as a nanoscale scanning magnetic probe at cryogenic temperatures, however, where many solid-state systems exhibit non-trivial magnetic order. Here, we present NV magnetic imaging down to 6 K with 3 µT Hz(-1/2) field sensitivity, and use the technique to image vortices in the iron pnictide superconductor BaFe2(As0.7P0.3)2 with critical temperature Tc = 30 K. The expansion of NV-based magnetic imaging to cryogenic temperatures will enable future studies of previously inaccessible nanoscale magnetism in condensed-matter systems.

6.
Nano Lett ; 16(4): 2450-4, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27010642

ABSTRACT

We demonstrate fully three-dimensional and patterned localization of nitrogen-vacancy (NV) centers in diamond with coherence times in excess of 1 ms. Nitrogen δ-doping during chemical vapor deposition diamond growth vertically confines nitrogen to 4 nm while electron irradiation with a transmission electron microscope laterally confines vacancies to less than 450 nm. We characterize the effects of electron energy and dose on NV formation. Importantly, our technique enables the formation of reliably high-quality NV centers inside diamond nanostructures with applications in quantum information and sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...