Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(23)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38884402

ABSTRACT

We provide a concurrent measurement of the hydrogen and oxygen nuclear kinetic energies in the water molecule across melting at 270 K in the solid phase and 276 K in the liquid phase. Experimental values are obtained by analyzing the neutron Compton profiles of each atomic species in a deep inelastic neutron scattering experiment. The concurrent measurement of the atom kinetic energy of both hydrogen and oxygen allows the estimate of the total kinetic energy per molecule due to the motion of nuclei, specifically 35.3 ± 0.8 and 34.8 ± 0.8 kJ/mol for the solid and liquid phases, respectively. Such a small difference supports results from ab initio simulations and phenomenological models from the literature on the mechanism of competing quantum effects across the phase change. Despite the experimental uncertainties, the results are consistent with the trend from state-of-the-art computer simulations, whereby the atom and molecule kinetic energies in the liquid phase would be slightly lower than in the solid phase. Moreover, the small change of nuclear kinetic energy across melting can be used to simplify the calculation of neutron-related environmental dose in complex locations, such as high altitude or polar neutron radiation research stations where liquid water and ice are both present: for neutron energies between hundreds of meV and tens of keV, the total scattering cross section per molecule in the two phases can be considered the same, with the macroscopic cross section only depending upon the density changes of water near the melting point.

2.
Arch Biochem Biophys ; 757: 110038, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750920

ABSTRACT

Oxidized albumin is considered a short-term biomarker of oxidative stress and its measurement in blood contributes to evaluate the impact of diseases, drugs, dialytic treatments, physical activity, environmental contaminants etc. on the red-ox balance of humans as well as of other mammalians. Nevertheless, the most common methods for quantifying the oxidized and reduced albumins are costly and time-consuming. Furthermore, there is a dearth of information regarding the proper ways to store human serum or plasma samples in order to prevent inaccurate quantification of these various albumin forms. This paper explores these aspects and proposes a few spectrophotometric assay procedures which make the quantitation of oxidized and reduced albumin very fast, precise and un-expensive in various mammals.


Subject(s)
Oxidation-Reduction , Serum Albumin , Animals , Humans , Biomarkers/blood , Mammals/blood , Oxidative Stress , Serum Albumin/analysis , Spectrophotometry
3.
Mol Aspects Med ; 94: 101225, 2023 12.
Article in English | MEDLINE | ID: mdl-38000334

ABSTRACT

In the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the natural course of the disease. Therefore, in accordance with the therapeutic regimens proposed for other neurodegenerative diseases, a modern strategy to treat glaucoma includes prescription of drugs with neuroprotective activities. With respect to this, several preclinical and clinical investigations on a plethora of different drugs are currently ongoing. In this review, first, the conceptualization of the rationale for the adoption of neuroprotective strategies for retina is summarized. Second, the molecular aspects highlighting glaucoma as a neurodegenerative disease are reported. In conclusion, the molecular and pharmacological properties of most promising direct neuroprotective drugs used to delay glaucoma progression are examined, including: neurotrophic factors, NMDA receptor antagonists, the α2-adrenergic agonist, brimonidine, calcium channel blockers, antioxidant agents, nicotinamide and statins.


Subject(s)
Glaucoma , Neurodegenerative Diseases , Retinal Diseases , Humans , Neurodegenerative Diseases/pathology , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/physiology , Glaucoma/drug therapy , Glaucoma/pathology , Brimonidine Tartrate/therapeutic use , Retina
4.
Biomolecules ; 13(10)2023 10 07.
Article in English | MEDLINE | ID: mdl-37892174

ABSTRACT

The insulin-degrading enzyme (IDE) is a Zn2+ peptidase originally discovered as the main enzyme involved in the degradation of insulin and other amyloidogenic peptides, such as the ß-amyloid (Aß) peptide. Therefore, a role for the IDE in the cure of diabetes and Alzheimer's disease (AD) has been long envisaged. Anyway, its role in degrading amyloidogenic proteins remains not clearly defined and, more recently, novel non-proteolytic functions of the IDE have been proposed. From a structural point of view, the IDE presents an atypical clamshell structure, underscoring unique enigmatic enzymological properties. A better understanding of the structure-function relationship may contribute to solving some existing paradoxes of IDE biology and, in light of its multifunctional activity, might lead to novel therapeutic approaches.


Subject(s)
Alzheimer Disease , Insulysin , Humans , Insulysin/chemistry , Insulysin/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Amyloidogenic Proteins , Drug Design
5.
Arch Biochem Biophys ; 750: 109786, 2023 12.
Article in English | MEDLINE | ID: mdl-37839788

ABSTRACT

Erythrocyte glutathione transferase is a well-known biomarker of environmental pollution. Examination of the extensive scientific literature discovers an atypical and very interesting property of this enzyme which may reveal a chronic exposition to many contaminants but in some cases even an acute and short-term dangerous contamination. This review also underlines the peculiar molecular and kinetic properties of this enzyme which makes it unique in the panorama of enzymes used as biomarker for environmental contamination.


Subject(s)
Environmental Pollution , Glutathione Transferase , Biomarkers , Erythrocytes , Glutathione
6.
J Inorg Biochem ; 247: 112338, 2023 10.
Article in English | MEDLINE | ID: mdl-37549473

ABSTRACT

NO binding to horse heart cytochrome c (hhcyt c) has been investigated as a function of pH by both optical absorption and EPR spectroscopies. Lowering pH from 3.5 to 1.5 induces: (i) a blue-shift of the maximum of the optical absorption spectrum in the Soret region from 415 to about 404 nm, and (ii) the appearance of a strong three hyperfine splitting in the gz region of the EPR spectrum. Both spectroscopic features indicate the cleavage of the proximal His18-Fe(II)-NO bond giving rise to the five-coordinated Fe(II)-NO species. By quantification of the relative weight for the six- and the five-coordinated component in the EPR spectra, the pKa value was determined. The apparent pKa of the proximal His Nε atom (1.8 ±â€¯0.1) is unusually low for a ferrous nitrosylated form since in all investigated ferrous NO-bound heme-proteins the pKa value for the cleavage of the proximal His-Fe(II) bond ranges between 3.7 and 5.8. The pKa value of ferrous nitrosylated hhcyt c indicates that the strength of the proximal His18-Fe(II) bond (= 27.9 kJ/mol) is about 10-22 kJ/mol higher than that observed in all investigated heme-proteins. The strong coordination of the heme-Fe atom by His18 is extremely important to maintain the redox efficiency of cyt c and to keep apoptosis under control. This is a crucial point in tissues, such as retina, where apoptosis might trigger macular degenerative processes.


Subject(s)
Cytochromes c , Heme , Animals , Horses , Cytochromes c/chemistry , Heme/chemistry , Electron Spin Resonance Spectroscopy , Oxidation-Reduction , Ferrous Compounds/chemistry
7.
Sci Rep ; 13(1): 14113, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644064

ABSTRACT

Lactoferrin, a multifunctional iron-binding protein containing 16 disulfides, is actively studied for its antibacterial and anti-carcinogenic properties. However, scarce information is nowadays available about its oxidative folding starting from the reduced and unfolded status. This study discovers unusual properties when this protein is examined in its reduced molten globule-like conformation. Using kinetic, CD and fluorescence analyses together with mass spectrometry, we found that a few cysteines display astonishing hyper-reactivity toward different thiol reagents. In details, four cysteines (i.e. 668, 64, 512 and 424) display thousands of times higher reactivity toward GSSG but normal against other natural disulfides. The formation of these four mixed-disulfides with glutathione probably represents the first step of its folding in vivo. A widespread low pKa decreases the reactivity of other 14 cysteines toward GSSG limiting their involvement in the early phase of the oxidative folding. The origin of this hyper-reactivity was due to transient lactoferrin-GSSG complex, as supported by fluorescence experiments. Lactoferrin represents another disulfide containing protein in addition to albumin, lysozyme, ribonuclease, chymotrypsinogen, and trypsinogen which shows cysteines with an extraordinary and specific hyper-reactivity toward GSSG confirming the discovery of a fascinating new feature of proteins in their nascent phase.


Subject(s)
Albumins , Lactoferrin , Glutathione Disulfide , Anti-Bacterial Agents , Cysteine , Disulfides
8.
Pharmacol Ther ; 241: 108329, 2023 01.
Article in English | MEDLINE | ID: mdl-36526014

ABSTRACT

The immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults. Hence, studying the alterations of immunoproteasome expression and activity is gaining research interest to define the dynamics of neuroinflammation as well as the early and late molecular events that are likely involved in the pathogenesis of a variety of neurological disorders. Furthermore, these novel functions foster the perspective of immunoproteasome as a potential therapeutic target for neurodegeneration. In this review, we provide a brain and retina-wide overview, trying to correlate present knowledge on structure-function relationships of immunoproteasome with the variety of observed neuro-modulatory functions.


Subject(s)
Antigen Presentation , Proteasome Endopeptidase Complex , Humans , Proteasome Endopeptidase Complex/metabolism , Synaptic Transmission , Brain/metabolism
9.
Int J Mol Sci ; 23(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36293286

ABSTRACT

The tyrosine kinase receptor encoded by the MET oncogene has been extensively studied. Surprisingly, one extracellular domain, PSI, evolutionary conserved between plexins, semaphorins, and integrins, has no established function. The MET PSI sequence contains two CXXC motifs, usually found in protein disulfide isomerases (PDI). Using a scrambled oxidized RNAse enzymatic activity assay in vitro, we show, for the first time, that the MET extracellular domain displays disulfide isomerase activity, abolished by PSI domain antibodies. PSI domain deletion or mutations of CXXC sites to AXXA or SXXS result in a significant impairment of the cleavage of the MET 175 kDa precursor protein, abolishing the maturation of α and ß chains, of, respectively, 50 kDa and 145 kDa, disulfide-linked. The uncleaved precursor is stuck in the Golgi apparatus and, interestingly, is constitutively phosphorylated. However, no signal transduction is observed as measured by AKT and MAPK phosphorylation. Consequently, biological responses to the MET ligand-hepatocyte growth factor (HGF)-such as growth and epithelial to mesenchymal transition, are hampered. These data show that the MET PSI domain is functional and is required for the maturation, surface expression, and biological functions of the MET oncogenic protein.


Subject(s)
Hepatocyte Growth Factor , Semaphorins , Hepatocyte Growth Factor/metabolism , Protein Disulfide-Isomerases/genetics , Ligands , Epithelial-Mesenchymal Transition , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Semaphorins/genetics , Oncogenes , Disulfides , Integrins/genetics , Ribonucleases/genetics
10.
Int J Mol Sci ; 23(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35887107

ABSTRACT

The pioneering experiments of Anfinsen on the oxidative folding of RNase have been revisited discovering some details, which update the statement of his dogma and shed new light on the leading role of the correct disulfide in the attainment of the native structure. CD analysis, mass spectrometry, fluorescence spectroscopy and enzyme activity indicate that native disulfides drive the formation of the secondary and tertiary structures that cannot be entirely formed in their absence. This opposes a common opinion that these structures are first formed and then stabilized by the native disulfides. Our results also indicate that a spontaneous re-oxidation of a reduced RNase cannot produce a complete recovery of activity, as described by many textbooks; this can be obtained only in the presence of a reshuffling solution such as GSH/GSSG.


Subject(s)
Disulfides , Protein Folding , Disulfides/chemistry , Oxidation-Reduction , Ribonuclease, Pancreatic/metabolism , Ribonucleases
11.
Antioxidants (Basel) ; 11(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35326177

ABSTRACT

The aim of this study was to evaluate the influence of hidden environmental pollution on some blood parameters of sheep to detect susceptible biomarkers able to reveal slight contamination. Four dairy sheep farms, two with semi-extensive and two with intensive type systems were involved in this study. Two farms in different systems were chosen as properly located in a southern area of Latium (Italy), close to the Sacco River, in which contamination with ß-hexachlorocyclohexane (ß-HCH) occurred in the past due to industrial waste. A recent study established the presence of low but detectable residual contamination in these areas. The other two farms were outside the contaminated area. Erythrocyte glutathione transferase (e-GST) and oxidative stress parameters were monitored as well as some immune response and metabolic profile parameters throughout the investigated period of four months. The present study showed a relevant and significant increase in e-GST (+63%) in the extensive farming system of the contaminated area, whereas some immune response biomarkers, i.e., white blood cells, neutrophils, lymphocytes, and lysozyme resulted within the physiological range. In all farms, oxidative stress and acute phase response parameters were also within the physiological range. Our results suggest that e-GST is a very effective alarm signal to reveal "hidden" persistent contamination by ß-HCH, and reasonably, by many other different dangerous pollutants.

12.
Int J Biochem Cell Biol ; 145: 106193, 2022 04.
Article in English | MEDLINE | ID: mdl-35257890

ABSTRACT

The scaffold protein Tumor Necrosis Factor Receptor-Associated Factor 2 (TRAF2) has been reported to play a key role in the endoplasmic reticulum (ER) stress-induced activation of c-Jun N-terminal Kinase (JNK) and hence autophagy. Autophagy is a highly conserved catabolic process, whose dysregulation is involved in the pathogenesis of various human diseases, including cancer. We investigated the involvement of TRAF2 in autophagy regulation in the human leukemic HAP1 cell line, under both basal and ER stress conditions. In TRAF2-knockout HAP1 cell line (KO), the basal autophagic flux was higher than in the parental cell line (WT). Moreover, tunicamycin-induced ER stress stimulated JNK activation and autophagy both in WT and KO HAP1. On the other hand, re-expression of a TRAF2 C-terminal fragment (residues ,310-501), in a TRAF2-KO cellular background, rendered HAP1 cells unable to activate both JNK and autophagy upon ER stress induction. Of note, this apparent dominant negative effect of the C-terminal fragment was observed even in the absence of the endogenous, full-length TRAF2 molecule. Furthermore, the expression of the C-terminal fragment resulted in both protein kinase B (AKT) pathway activation and increased resistance to the toxic effects induced by prolonged ER stress conditions. These findings indicate that TRAF2 is dispensable for the activation of both JNK and autophagy in HAP1 cells, while the TRAF2 C-terminal domain may play an autonomous role in regulating the cellular response to ER stress.


Subject(s)
Endoplasmic Reticulum Stress , Leukemia , TNF Receptor-Associated Factor 2/metabolism , Apoptosis , Autophagy/genetics , Endoplasmic Reticulum Stress/genetics , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Leukemia/genetics , Nerve Tissue Proteins/metabolism , Signal Transduction , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/pharmacology , Ubiquitin-Protein Ligases/metabolism
13.
J Med Chem ; 64(21): 15973-15990, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34714648

ABSTRACT

We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein. The best peptide reverted the effects of a pathogenic variant (D61G) in zebrafish embryos. Our results provide a novel route for SHP2-targeted therapies and a tool for investigating the role of protein-protein interactions in the function of SHP2.


Subject(s)
Oncogenes , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , src Homology Domains/drug effects , Animals , Binding Sites , Mutation , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Signal Transduction , Zebrafish/embryology
14.
Int J Mol Sci ; 22(18)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34576311

ABSTRACT

Glutathione has long been suspected to be the primary low molecular weight compound present in all cells promoting the oxidative protein folding, but twenty years ago it was found "not guilty". Now, new surprising evidence repeats its request to be the "smoking gun" which reopens the criminal trial revealing the crucial involvement of this tripeptide.


Subject(s)
Glutathione/metabolism , Oxygen/metabolism , Protein Folding , Animals , Cysteine/metabolism , Humans , Protein Processing, Post-Translational
15.
FEBS J ; 288(20): 6003-6018, 2021 10.
Article in English | MEDLINE | ID: mdl-33876866

ABSTRACT

An enigmatic and never described hyper-reactivity of most of the cysteines resident in the reduced, molten globule-like intermediate of a few proteins has been recently discovered. In particular, all ten cysteines of chymotrypsinogen showed hundred times increased reactivity against hydrophobic reagents. A single cysteine (Cys1) was also found thousand times more reactive toward GSSG, making speculate that a single glutathionylation could represent the primordial event of its oxidative folding. In the present study, we compare these kinetic properties with those present in trypsinogen taken in its reduced, molten globule-like intermediate and identify the origin of these unusual properties. Despite the divergent evolution of these two proteins, the different amount of disulfides and the very different 3D localization of three disulfides, their hyper-reactivity toward hydrophobic thiol reagents and disulfides is very similar. Mass spectrometry identifies two cysteines in trypsinogen, Cys148 and Cys197, 800 times more reactive toward GSSG than an unperturbed protein cysteine. These results point toward a stringent and accurate preservation of these peculiar kinetic properties during a divergent evolution suggesting some important role, which at the present can only be hypothesized. Similar extraordinary hyper-reactivity has been found also in albumin, ribonuclease, and lysozyme confirming that it cannot be considered a kinetic singularity of a single protein. Interestingly, the very flexible and fluctuating structures like those typical of the molten globule status prove capable of enabling sophisticated actions typical of enzymes such as binding to GSSG with relevant specificity and high affinity (KD  = 0.4 mm) and accelerating the reaction of its cysteines by thousands of times.


Subject(s)
Chymotrypsinogen/chemistry , Cysteine/chemistry , Disulfides/chemistry , Evolution, Molecular , Glutathione/chemistry , Protein Folding , Trypsinogen/chemistry , Chymotrypsinogen/metabolism , Cysteine/metabolism , Disulfides/metabolism , Glutathione/metabolism , Humans , Oxidation-Reduction , Trypsinogen/metabolism
16.
J Chem Phys ; 153(13): 134306, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33032407

ABSTRACT

The Mariana Trench is one of the most famous and extreme environments on our planet. We report experimental values of the hydrogen nuclear mean kinetic energy in water samples at the same physical and chemical conditions than in the Challenger Deep within the Mariana Trench: a pressure of 1092 bars, a temperature of 1 °C, and a salinity of 35 g of salt per kg of water. Results were obtained by deep inelastic neutron scattering at the VESUVIO spectrometer at ISIS. We find that the effect of pressure is to increase the hydrogen nuclear mean kinetic energy with respect to ambient conditions, while ions in the solution have the opposite effect. These results confirm the recent state-of-the-art simulations of the nuclear hydrogen dynamics in water. The changes in the nuclear mean kinetic energy likely correspond to different isotopic fractionation values in the Challenger Deep compared to standard sea water.

17.
Int J Mol Sci ; 21(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971812

ABSTRACT

Protein cysteines often play crucial functional and structural roles, so they are emerging targets to design covalent thiol ligands that are able to modulate enzyme or protein functions. Some of these residues, especially those involved in enzyme mechanisms-including nucleophilic and reductive catalysis and thiol-disulfide exchange-display unusual hyper-reactivity; such a property is expected to result from a low pKa and from a great accessibility to a given reagent. New findings and previous evidence clearly indicate that pKa perturbations can only produce two-four-times increased reactivity at physiological pH values, far from the hundred and even thousand-times kinetic enhancements observed for some protein cysteines. The data from the molten globule-like structures of ribonuclease, lysozyme, bovine serum albumin and chymotrypsinogen identified new speeding agents, i.e., hydrophobic/electrostatic interactions and productive complex formations involving the protein and thiol reagent, which were able to confer exceptional reactivity to structural cysteines which were only intended to form disulfides. This study, for the first time, evaluates quantitatively the different contributions of pKa and other factors to the overall reactivity. These findings may help to clarify the mechanisms that allow a rapid disulfide formation during the oxidative folding of many proteins.


Subject(s)
Cysteine/chemistry , Disulfides/chemistry , Muramidase/chemistry , Protein Folding , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Protein Conformation
18.
Biochem Pharmacol ; 182: 114225, 2020 12.
Article in English | MEDLINE | ID: mdl-32956643

ABSTRACT

In the Fall of 2019 a sudden and dramatic outbreak of a pulmonary disease (Coronavirus Disease COVID-19), due to a new Coronavirus strain (i.e., SARS-CoV-2), emerged in the continental Chinese area of Wuhan and quickly diffused throughout the world, causing up to now several hundreds of thousand deaths. As for common viral infections, the crucial event for the viral life cycle is the entry of genetic material inside the host cell, realized by the spike protein of the virus through its binding to host receptors and its activation by host proteases; this is followed by translation of the viral RNA into a polyprotein, exploiting the host cell machinery. The production of individual mature viral proteins is pivotal for replication and release of new virions. Several proteolytic enzymes either of the host and of the virus act in a concerted fashion to regulate and coordinate specific steps of the viral replication and assembly, such as (i) the entry of the virus, (ii) the maturation of the polyprotein and (iii) the assembly of the secreted virions for further diffusion. Therefore, proteases involved in these three steps are important targets, envisaging that molecules which interfere with their activity are promising therapeutic compounds. In this review, we will survey what is known up to now on the role of specific proteolytic enzymes in these three steps and of most promising compounds designed to impair this vicious cycle.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/enzymology , Peptide Hydrolases/metabolism , Protease Inhibitors/therapeutic use , Animals , Drug Delivery Systems , Humans , Virus Replication , COVID-19 Drug Treatment
19.
Pharmaceuticals (Basel) ; 13(7)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664308

ABSTRACT

The identification of natural bioactive compounds, able to counteract the abnormal increase of oxidative stress and inflammatory status in chronic degenerative non-communicable diseases is useful for the clinical management of these conditions. We tested an oral food supplement (OFS), chemically characterized and evaluated for in vitro and in vivo activity. Vitamin C, analyzed by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD), was 0.19 mg/g in rosehip dry extract and 15.74 mg/capsule in the OFS. The identification of polyphenols was performed by HPLC-DAD; the total antioxidant capacity was assessed by Folin-Ciocalteu test. Total polyphenols were 14.73 mg/g gallic acid equivalents (GAE) for rosehip extract and 1.93 mg/g GAE for OFS. A total of 21 chronic kidney disease (CKD) patients and 10 healthy volunteers were recruited. The evaluation of routine laboratory and inflammatory parameters, erythrocyte glutathione transferase (e-GST), human oxidized serum albumin (HSAox), and assessment of body composition were performed at two different times, at baseline and after 5 weeks of OFS assumption. In the study, we highlighted a significant decrease of traditional inflammatory biomarkers (such as C-reactive protein, erythrocyte sedimentation rate, platelet to lymphocyte ratio) and other laboratory parameters like e-GST, azotaemia, and albuminuria after OFS treatment in CKD patients. Moreover, we demonstrated a lipid profile improvement in CKD patients after OFS supplementation.

20.
Sci Rep ; 10(1): 8943, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488029

ABSTRACT

Chymotrypsinogen, when reduced and taken to its molten globule-like conformation, displays a single cysteine with an unusual kinetic propensity toward oxidized glutathione (GSSG) and other organic thiol reagents. A single residue, identified by mass spectrometry like Cys1, reacts with GSSG about 1400 times faster than an unperturbed protein cysteine. A reversible protein-GSSG complex and a low pKa (8.1 ± 0.1) make possible such astonishing kinetic property which is absent toward other natural disulfides like cystine, homocystine and cystamine. An evident hyper-reactivity toward 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and 1-chloro-2,4-dinitrobenzene (CDNB) was also found for this specific residue. The extraordinary reactivity toward GSSG is absent in two proteins of the thermophilic archaeon Sulfolobus solfataricus, an organism lacking glutathione: the Protein Disulphide Oxidoreductase (SsPDO) and the Bacterioferritin Comigratory Protein 1 (Bcp1) that displays Cys residues with an even lower pKa value (7.5 ± 0.1) compared to chymotrypsinogen. This study, which also uses single mutants in Cys residues for Bcp1, proposes that this hyper-reactivity of a single cysteine, similar to that found in serum albumin, lysozyme, ribonuclease, may have relevance to drive the "incipit" of the oxidative folding of proteins from organisms where the glutathione/oxidized glutathione (GSH/GSSG) system is present.


Subject(s)
Archaeal Proteins/metabolism , Chymotrypsinogen/metabolism , Glutathione/metabolism , Amino Acid Sequence , Archaea/metabolism , Chymotrypsinogen/physiology , Cysteine/metabolism , Disulfides/chemistry , Glutathione/physiology , Glutathione Disulfide/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Protein Folding , Sulfhydryl Compounds/chemistry , Sulfhydryl Reagents/chemistry , Sulfolobus solfataricus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...