Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2405712, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230280

ABSTRACT

Forensic case samples collected in sexual assaults typically contain DNA from multiple sources, which complicates short-tandem repeat (STR) profiling. These samples are typically sent to a laboratory to separate the DNA from sperm and non-sperm sources prior to analysis. Here, the automation and miniaturization of these steps using digital microfluidics (DMF) is reported, which may eventually enable processing sexual assault samples outside of the laboratory, at the point of need. When applied to vaginal swab samples collected up to 12 h post-coitus (PC), the new method identifies single-source (male) STR profiles. When applied to samples collected 24-72 h PC, the method identifies mixed STR profiles, suggesting room for improvement and/or potential for data deconvolution. In sum, an automated, miniaturized sample pre-processing method for separating the DNA contained in sexual assault samples is demonstrated. This type of automated processing using DMF, especially when combined with Rapid DNA Analysis, has the potential to be used for processing of sexual assault samples in hospitals, police offices, and other locations outside of the laboratory.

2.
Science ; 384(6697): eadk9227, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753786

ABSTRACT

Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing-and democratizing-scientific discovery.

SELECTION OF CITATIONS
SEARCH DETAIL