Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Infect Dis ; 76(3): e957-e964, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36350995

ABSTRACT

BACKGROUND: Halting transmission of Mycobacterium tuberculosis (Mtb) by identifying infectious individuals early is key to eradicating tuberculosis (TB). Here we evaluate face mask sampling as a tool for stratifying the infection risk of individuals with pulmonary TB (PTB) to their household contacts. METHODS: Forty-six sputum-positive PTB patients in The Gambia (August 2016-November 2017) consented to mask sampling prior to commencing treatment. Incident Mtb infection was defined in 181 of their 217 household contacts as QuantiFERON conversion or an increase in interferon-γ of ≥1 IU/mL, 6 months after index diagnosis. Multilevel mixed-effects logistical regression analysis with cluster adjustment by household was used to identify predictors of incident infection. RESULTS: Mtb was detected in 91% of PTB mask samples with high variation in IS6110 copies (5.3 × 102 to 1.2 × 107). A high mask Mtb level (≥20 000 IS6110 copies) was observed in 45% of cases and was independently associated with increased likelihood of incident Mtb infection in contacts (adjusted odds ratio, 3.20 [95% confidence interval, 1.26-8.12]; P = .01), compared with cases having low-positive/negative mask Mtb levels. Mask Mtb level was a better predictor of incident Mtb infection than sputum bacillary load, chest radiographic characteristics, or sleeping proximity. CONCLUSIONS: Mask sampling offers a sensitive and noninvasive tool to support the stratification of individuals who are most infectious in high-TB-burden settings. Our approach can provide better insight into community transmission in complex environments.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/complications , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis/complications , Interferon-gamma , Sputum/microbiology
2.
Molecules ; 27(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35889319

ABSTRACT

Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is one of the most devastating infectious agents in the world. Chemical-genetic characterization through in vitro evolution combined with whole genome sequencing analysis was used identify novel drug targets and drug resistance genes in Mtb associated with its intracellular growth in human macrophages. We performed a genome analysis of 53 Mtb mutants resistant to 15 different hit compounds. We found nonsynonymous mutations/indels in 30 genes that may be associated with drug resistance acquisitions. Beyond confirming previously identified drug resistance mechanisms such as rpoB and lead targets reported in novel anti-tuberculosis drug screenings such as mmpL3, ethA, and mbtA, we have discovered several unrecognized candidate drug targets including prrB. The exploration of the Mtb chemical mutant genomes could help novel drug discovery and the structural biology of compounds and associated mechanisms of action relevant to tuberculosis treatment.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Humans , INDEL Mutation , Macrophages/microbiology , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology
3.
J Med Chem ; 63(9): 4732-4748, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32275415

ABSTRACT

Screening of a GSK-proprietary library against intracellular Mycobacterium tuberculosis identified 1, a thioalkylbenzoxazole hit. Biological profiling and mutant analysis revealed that this compound is a prodrug that is bioactivated by the mycobacterial enzyme MymA. A hit-expansion program including design, synthesis, and profiling of a defined set of analogues with optimized drug-like properties led to the identification of an emerging lead compound, displaying potency against intracellular bacteria in the low micromolar range, high in vitro solubility and permeability, and excellent microsomal stability.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Benzoxazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Oxygenases/metabolism , Prodrugs/pharmacology , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/metabolism , Benzoxazoles/chemical synthesis , Benzoxazoles/metabolism , Cell Line, Tumor , Humans , Mice , Microbial Sensitivity Tests , Microsomes, Liver/drug effects , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/metabolism , Structure-Activity Relationship
4.
Front Immunol ; 9: 3093, 2018.
Article in English | MEDLINE | ID: mdl-30662443

ABSTRACT

Background: Prior Influenza A viral (IAV) infection has been shown to increase susceptibility to tuberculosis (TB) and TB has also been shown to be a primary cause of death during pandemics, including the Spanish Influenza outbreak of 1918-1919. The majority of data has been obtained from mouse models, thus the aim of this study was to determine the impact of Flu co-infection on host immunity and disease severity in TB patients at diagnosis. Methods: Sputum from 282 patients with active TB were analyzed for presence of FluA/FluB RNA at presentation using multiplex PCR. Sputum RNA was also analyzed for Mycobacterium tuberculosis (Mtb) load using 16S RNA amplification. Supernatants from digested sputum and Mtb antigen-stimulated whole blood were analyzed using multiplex cytokine arrays and PBMC were analyzed for cytokine production from CD4+ T, CD8+ T and Mucosal Associated Invariant T cells (MAITs). Results: 12 (4.3%) of TB patients were found to have FluA or FluB viral RNA present in their sputum at the time of TB diagnosis. The TB/Flu co-infected patients had a significantly higher bacterial load compared to those with TB mono-infection (p = 0.0026). They had lower levels of IL17A in ex vivo sputum (p = 0.0275) and higher MCP-1 (CCL2) levels in the blood following PPD stimulation (p = 0.0267). TB/Flu co-infected subjects had significantly higher IFN-γ+IL-17+CD4+ and IFN-γ+IL-17-CD8+ cells compared to TB mono-infected subjects. Conclusions: These data show that Flu co-infection at time of TB diagnosis is associated with a higher bacterial load and differential cellular and soluble profiles. These findings show for the first time the impact of TB/Flu co-infection in a human cohort and support the potential benefit of Flu vaccination in TB-endemic settings.


Subject(s)
Coinfection/immunology , Influenza, Human/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Adult , Bacterial Load , Cohort Studies , Coinfection/blood , Coinfection/diagnosis , Coinfection/microbiology , DNA, Bacterial/isolation & purification , Female , Gambia , Humans , Influenza A virus/genetics , Influenza A virus/immunology , Influenza A virus/isolation & purification , Influenza B virus/genetics , Influenza B virus/immunology , Influenza B virus/isolation & purification , Influenza, Human/blood , Influenza, Human/diagnosis , Influenza, Human/virology , Male , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , RNA, Ribosomal, 16S/genetics , RNA, Viral/isolation & purification , Sputum/microbiology , Tuberculosis, Pulmonary/blood , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Young Adult
5.
PLoS One ; 11(12): e0168272, 2016.
Article in English | MEDLINE | ID: mdl-27992487

ABSTRACT

BACKGROUND: Tuberculosis (TB) has overtaken HIV as the biggest infectious disease killer, with the majority of deaths occurring in sub-Saharan Africa. However it is unknown how differences in bacterial load alter host immune profiles in the sputum and blood of TB patients. METHODS: 16S ribosomal RNA analysis was used to determine bacterial load in sputum samples obtained from 173 patients with active TB (57 pre-treatment and 116 post-treatment). Host analyte concentrations in sputum and Mycobacterium tuberculosis (Mtb) antigen stimulated whole blood assay supernatants were analysed using multiplex cytokine arrays. RESULTS: Multiple logistic regression adjusting for age, sex and HIV status showed highly significant correlation of bacterial load with IL1ß, IL2, IL1RA, IL4, IL6, IL8, IL9, IL15, IL17, EOTAX, FGF, IFN-γ, GCSF, MCP1, M1P1α, M1P1ß, PDGF, TNFα, VEGF in sputum. With increasing time on treatment, FGF levels in sputum displayed the most significant inverse correlation with reduction in bacterial load. CONCLUSIONS: We show that differences in bacterial load correlates with changes in several host biomarkers. These findings have implications for development of tests for TB diagnosis and treatment response.


Subject(s)
Bacterial Load/methods , Cytokines/blood , Mycobacterium tuberculosis/genetics , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Tuberculosis/blood , Tuberculosis/microbiology , Adult , Africa South of the Sahara , Antitubercular Agents/therapeutic use , Bacterial Load/genetics , Female , Gambia , Humans , Male , Molecular Diagnostic Techniques , Sputum/microbiology , Treatment Outcome , Tuberculosis/diagnosis , Tuberculosis/drug therapy
6.
J Infect ; 72(3): 332-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26724771

ABSTRACT

BACKGROUND: Diagnosis of tuberculosis (TB) remains difficult, particularly in resource-limited settings. The development of nucleic acid-based tests for detection of Mycobacterium tuberculosis complex (MTBC) has significantly increased sensitivity compared to conventional smear microscopy and provides results within a matter of hours compared to weeks for the current gold-standard, liquid culture. METHODS: In this study we performed side-by-side comparison of mycobacterial detection assays on sputum samples from 285 subjects presenting with symptoms suggestive of TB in The Gambia and a cross-sectional cohort of 156 confirmed TB patients with a median of 2 months of treatment. A novel assay, Loop-Mediated Amplification test for TB (TB-LAMP), was compared to smear microscopy, MGIT culture and GeneXpert MTB/RIF for all samples. RESULTS: When culture was used as the reference standard, we found an overall sensitivity for TB-LAMP of 99% (95% CI: 94.5-99.8) and specificity of 94% (95% CI: 89.3-96.7). When latent class analysis was performed, TB-LAMP had 98.6% (95% CI: 95.9-100) sensitivity and 99% (95% CI: 98.2-100) specificity compared to 91.1% (95% CI: 86.1-96) sensitivity and 100% (95% CI: 98.2-100) specificity for MGIT culture. GeneXpert had the highest sensitivity 99.1% (95% CI: 97.1-100) but the lowest specificity 96% (95% CI: 92.6-98.3). Both TB-LAMP and GeneXpert showed high sensitivity and specificity regardless of age or strain of infection. CONCLUSION: Our findings show the diagnostic utility of both GeneXpert and TB-LAMP in The Gambia. Whilst TB-LAMP requires less infrastructure, it is unable to detect drug-resistant patterns and therefore would be most suitable as a screening test for new TB cases in peripheral health clinics.


Subject(s)
Bacteriological Techniques/methods , Molecular Diagnostic Techniques/methods , Mycobacterium/isolation & purification , Sputum/microbiology , Tuberculosis, Pulmonary/diagnosis , Adolescent , Adult , Aged , Child , Child, Preschool , Cross-Sectional Studies , Female , Gambia , Humans , Male , Middle Aged , Mycobacterium/genetics , Mycobacterium/growth & development , Young Adult
7.
PLoS One ; 9(12): e116268, 2014.
Article in English | MEDLINE | ID: mdl-25549338

ABSTRACT

BACKGROUND: The identification of Mycobacterium-tuberculosis (Mtb) infected individuals remains a challenge due to an insufficient understanding of immune responses detected with the current diagnostic tests for latent tuberculosis i.e. the tuberculin skin test (TST) or IFN-γ release assays (IGRAs) and an inability to distinguish infection stages with current immunologic assays. Further classification based on markers other than IFN-γ may help to define markers of early Mtb infection. METHODS: We assessed the TST status of Mtb-exposed household contacts at baseline and at 6 months. Contacts were classified into those with initial positive TST (TST+); those with baseline negative TST but TST conversion at 6 months (TST converters, TSTC) and those with persistently negative TST (PTST-). We assessed their short- and long-term immune responses to PPD and ESAT-6/CFP-10 (EC) via IFN-γ ELISPOT and a multiplex cytokine array in relation to TST status and compared them to those of TB cases to identify immune profiles associated with a spectrum of infection stages. RESULTS: After 1 and 6 days stimulation with EC, 12 cytokines (IFN-γ, IL-2, IP-10, TNF-α, IL-13, IL-17, IL-10, GMCSF, MIP-1ß, MCP-3, IL-2RA and IL-1A) were not different in TSTC compared to TST+ suggesting that robust adaptive Mtb-specific immune responses precede TST conversion. Stratifying contacts by baseline IFN-γ ELISPOT to EC in combination with TST results revealed that IP-10 and IL-17 were highest in the group of TST converters with positive baseline ELISPOT, suggesting they might be markers for recent infection. CONCLUSION: We describe a detailed analysis of Mtb-specific biomarker profiles in exposed household contacts in a TB endemic area that provides insights into the dynamic immune responses to Mtb infection and may help to identify biomarkers for 'at-risk' populations beyond TST and IGRA.


Subject(s)
Antigens, Bacterial/immunology , Contact Tracing , Interferon-gamma/metabolism , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Adult , Cells, Cultured , Endemic Diseases , Female , Humans , Male , Middle Aged , Mycobacterium tuberculosis/immunology , Tuberculin Test , Tuberculosis/immunology , Tuberculosis/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL