Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34638450

ABSTRACT

Circulating tumor cells (CTCs) are promising diagnostic and prognostic tools for clinical use. In several cancers, including colorectal and breast, the CTC load has been associated with a therapeutic response as well as progression-free and overall survival. However, counting and isolating CTCs remains sub-optimal because they are currently largely identified by epithelial markers such as EpCAM. New, complementary CTC surface markers are therefore urgently needed. We previously demonstrated that a splice variant of CD44, CD44 variable alternative exon 6 (CD44v6), is highly and specifically expressed by CTC cell lines derived from blood samples in colorectal cancer (CRC) patients. Two different approaches-immune detection coupled with magnetic beads and fluorescence-activated cell sorting-were optimized to purify CTCs from patient blood samples based on high expressions of CD44v6. We revealed the potential of the CD44v6 as a complementary marker to EpCAM to detect and purify CTCs in colorectal cancer blood samples. Furthermore, this marker is not restricted to colorectal cancer since CD44v6 is also expressed on CTCs from breast cancer patients. Overall, these results strongly suggest that CD44v6 could be useful to enumerate and purify CTCs from cancers of different origins, paving the way to more efficacious combined markers that encompass CTC heterogeneity.

3.
Neuron ; 100(4): 816-830.e7, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30344044

ABSTRACT

Through the generation of humanized FUS mice expressing full-length human FUS, we identify that when expressed at near endogenous murine FUS levels, both wild-type and ALS-causing and frontotemporal dementia (FTD)-causing mutations complement the essential function(s) of murine FUS. Replacement of murine FUS with mutant, but not wild-type, human FUS causes stress-mediated induction of chaperones, decreased expression of ion channels and transporters essential for synaptic function, and reduced synaptic activity without loss of nuclear FUS or its cytoplasmic aggregation. Most strikingly, accumulation of mutant human FUS is shown to activate an integrated stress response and to inhibit local, intra-axonal protein synthesis in hippocampal neurons and sciatic nerves. Collectively, our evidence demonstrates that human ALS/FTD-linked mutations in FUS induce a gain of toxicity that includes stress-mediated suppression in intra-axonal translation, synaptic dysfunction, and progressive age-dependent motor and cognitive disease without cytoplasmic aggregation, altered nuclear localization, or aberrant splicing of FUS-bound pre-mRNAs. VIDEO ABSTRACT.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Axons/physiology , Frontotemporal Dementia/genetics , Loss of Function Mutation/genetics , Protein Biosynthesis/physiology , RNA-Binding Protein FUS/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Axons/pathology , Cells, Cultured , Female , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , RNA-Binding Protein FUS/biosynthesis
4.
Front Mol Neurosci ; 10: 340, 2017.
Article in English | MEDLINE | ID: mdl-29104533

ABSTRACT

Fragile X syndrome (FXS) is a genetic disorder due to the silencing of the Fmr1 gene, causing intellectual disability, seizures, hyperactivity, and social anxiety. All these symptoms result from the loss of expression of the RNA binding protein fragile X mental retardation protein (FMRP), which alters the neurodevelopmental program to abnormal wiring of specific circuits. Aberrant mRNAs translation associated with the loss of Fmr1 product is widely suspected to be in part the cause of FXS. However, precise gene expression changes involved in this disorder have yet to be defined. The objective of this study was to identify the set of mistranslated mRNAs that could contribute to neurological deficits in FXS. We used the RiboTag approach and RNA sequencing to provide an exhaustive listing of genes whose mRNAs are differentially translated in hippocampal CA1 pyramidal neurons as the integrative result of FMRP loss and subsequent neurodevelopmental adaptations. Among genes differentially regulated between adult WT and Fmr1-/y mice, we found enrichment in FMRP-binders but also a majority of non-FMRP-binders. Interestingly, both up- and down-regulation of specific gene expression is relevant to fully understand the molecular deficiencies triggering FXS. More importantly, functional genomic analysis highlighted the importance of genes involved in neuronal connectivity. Among them, we show that Klk8 altered expression participates in the abnormal hippocampal dendritic spine maturation observed in a mouse model of FXS.

5.
Proc Natl Acad Sci U S A ; 112(46): E6321-30, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26578792

ABSTRACT

Centrosomes are microtubule-organizing centers that facilitate bipolar mitotic spindle assembly and chromosome segregation. Recognizing that centrosome amplification is a common feature of aneuploid cancer cells, we tested whether supernumerary centrosomes are sufficient to drive tumor development. To do this, we constructed and analyzed mice in which centrosome amplification can be induced by a Cre-recombinase-mediated increase in expression of Polo-like kinase 4 (Plk4). Elevated Plk4 in mouse fibroblasts produced supernumerary centrosomes and enhanced the expected mitotic errors, but proliferation continued only after inactivation of the p53 tumor suppressor. Increasing Plk4 levels in mice with functional p53 produced centrosome amplification in liver and skin, but this did not promote spontaneous tumor development in these tissues or enhance the growth of chemically induced skin tumors. In the absence of p53, Plk4 overexpression generated widespread centrosome amplification, but did not drive additional tumors or affect development of the fatal thymic lymphomas that arise in animals lacking p53. We conclude that, independent of p53 status, supernumerary centrosomes are not sufficient to drive tumor formation.


Subject(s)
Asymmetric Cell Division/physiology , Centrosome/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation , Lymphoma/genetics , Lymphoma/metabolism , Lymphoma/pathology , Mice , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Thymus Neoplasms/genetics , Thymus Neoplasms/metabolism , Thymus Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
6.
Nucleic Acid Ther ; 24(3): 199-209, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24694346

ABSTRACT

Mutant huntingtin (HTT) protein is the cause of Huntington's disease (HD), an incurable neurological disorder. Almost all patients are heterozygous for mutant HTT and approaches that reduce levels of mutant HTT while leaving expression of wild-type HTT intact might be ideal options for therapeutic development. We have developed several allele-selective strategies for silencing HTT, including single-stranded silencing RNAs (ss-siRNAs). ss-siRNAs are oligonucleotides containing chemical modifications that permit action through the RNA interference (RNAi) pathway. Modified ss-siRNAs chosen to test the effects of varying oligomer length, lipid modification, the introduction of mismatched bases, and variation of chemical modification. We find that several modified ss-siRNA are potent and allele-selective inhibitors of HTT expression. An ss-siRNA with three mismatched bases relative to the CAG repeat was an allele-selective inhibitor of HTT expression in the HdhQ175 mouse model. Multiple allele-selective ss-siRNAs provide a wide platform of modifications to draw on for further optimization and therapeutic development. Our data provide insights into how ss-siRNAs can be modified to improve their properties and facilitate the discovery of the lead compounds necessary for further development.


Subject(s)
Alleles , Brain/metabolism , Huntington Disease/genetics , Nerve Tissue Proteins/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Animals , Base Sequence , Brain/pathology , Cell Line , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation , Humans , Huntingtin Protein , Huntington Disease/metabolism , Huntington Disease/pathology , Injections, Intraventricular , Lipids/chemistry , Mice , Molecular Sequence Data , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , RNA Interference , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/metabolism , RNA, Small Interfering/chemical synthesis , RNA, Small Interfering/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...