Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(31): e2122460119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35878040

ABSTRACT

Mineral nutrition is one of the key environmental factors determining plant development and growth. Nitrate is the major form of macronutrient nitrogen that plants take up from the soil. Fluctuating availability or deficiency of this element severely limits plant growth and negatively affects crop production in the agricultural system. To cope with the heterogeneity of nitrate distribution in soil, plants evolved a complex regulatory mechanism that allows rapid adjustment of physiological and developmental processes to the status of this nutrient. The root, as a major exploitation organ that controls the uptake of nitrate to the plant body, acts as a regulatory hub that, according to nitrate availability, coordinates the growth and development of other plant organs. Here, we identified a regulatory framework, where cytokinin response factors (CRFs) play a central role as a molecular readout of the nitrate status in roots to guide shoot adaptive developmental response. We show that nitrate-driven activation of NLP7, a master regulator of nitrate response in plants, fine tunes biosynthesis of cytokinin in roots and its translocation to shoots where it enhances expression of CRFs. CRFs, through direct transcriptional regulation of PIN auxin transporters, promote the flow of auxin and thereby stimulate the development of shoot organs.


Subject(s)
Indoleacetic Acids , Nitrates , Cytokinins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Nitrates/metabolism , Plant Roots/metabolism , Plant Shoots , Signal Transduction , Soil
2.
EMBO J ; 40(3): e106862, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33399250

ABSTRACT

Availability of the essential macronutrient nitrogen in soil plays a critical role in plant growth, development, and impacts agricultural productivity. Plants have evolved different strategies for sensing and responding to heterogeneous nitrogen distribution. Modulation of root system architecture, including primary root growth and branching, is among the most essential plant adaptions to ensure adequate nitrogen acquisition. However, the immediate molecular pathways coordinating the adjustment of root growth in response to distinct nitrogen sources, such as nitrate or ammonium, are poorly understood. Here, we show that growth as manifested by cell division and elongation is synchronized by coordinated auxin flux between two adjacent outer tissue layers of the root. This coordination is achieved by nitrate-dependent dephosphorylation of the PIN2 auxin efflux carrier at a previously uncharacterized phosphorylation site, leading to subsequent PIN2 lateralization and thereby regulating auxin flow between adjacent tissues. A dynamic computer model based on our experimental data successfully recapitulates experimental observations. Our study provides mechanistic insights broadening our understanding of root growth mechanisms in dynamic environments.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Nitrogen/metabolism , Arabidopsis/metabolism , Biological Transport , Indoleacetic Acids/metabolism , Phosphorylation , Plant Roots/growth & development , Plant Roots/metabolism
3.
J Exp Bot ; 71(15): 4480-4494, 2020 07 25.
Article in English | MEDLINE | ID: mdl-32428238

ABSTRACT

In agricultural systems, nitrate is the main source of nitrogen available for plants. Besides its role as a nutrient, nitrate has been shown to act as a signal molecule in plant growth, development, and stress responses. In Arabidopsis, the NRT1.1 nitrate transceptor represses lateral root (LR) development at low nitrate availability by promoting auxin basipetal transport out of the LR primordia (LRPs). Here we show that NRT1.1 acts as a negative regulator of the TAR2 auxin biosynthetic gene in the root stele. This is expected to repress local auxin biosynthesis and thus to reduce acropetal auxin supply to the LRPs. Moreover, NRT1.1 also negatively affects expression of the LAX3 auxin influx carrier, thus preventing the cell wall remodeling required for overlying tissue separation during LRP emergence. NRT1.1-mediated repression of both TAR2 and LAX3 is suppressed at high nitrate availability, resulting in nitrate induction of the TAR2 and LAX3 expression that is required for optimal stimulation of LR development by nitrate. Altogether, our results indicate that the NRT1.1 transceptor coordinately controls several crucial auxin-associated processes required for LRP development, and as a consequence that NRT1.1 plays a much more integrated role than previously expected in regulating the nitrate response of root system architecture.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids , Mutation , Nitrates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism
4.
Plant Physiol ; 172(2): 1237-1248, 2016 10.
Article in English | MEDLINE | ID: mdl-27543115

ABSTRACT

Plants are able to modulate root growth and development to optimize their nitrogen nutrition. In Arabidopsis (Arabidopsis thaliana), the adaptive root response to nitrate (NO3-) depends on the NRT1.1/NPF6.3 transporter/sensor. NRT1.1 represses emergence of lateral root primordia (LRPs) at low concentration or absence of NO3- through its auxin transport activity that lowers auxin accumulation in LR. However, these functional data strongly contrast with the known transcriptional regulation of NRT1.1, which is markedly repressed in LRPs in the absence of NO3- To explain this discrepancy, we investigated in detail the spatiotemporal expression pattern of the NRT1.1 protein during LRP development and combined local transcript analysis with the use of transgenic lines expressing tagged NRT1.1 proteins. Our results show that although NO3- stimulates NRT1.1 transcription and probably mRNA stability both in primary root tissues and in LRPs, it acts differentially on protein accumulation, depending on the tissues considered with stimulation in cortex and epidermis of the primary root and a strong repression in LRPs and to a lower extent at the primary root tip. This demonstrates that NRT1.1 is strongly regulated at the posttranscriptional level by tissue-specific mechanisms. These mechanisms are crucial for controlling the large palette of adaptive responses to NO3- mediated by NRT1.1 as they ensure that the protein is present in the proper tissue under the specific conditions where it plays a signaling role in this particular tissue.


Subject(s)
Anion Transport Proteins/metabolism , Arabidopsis/metabolism , Nitrates/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Anion Transport Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Meristem/genetics , Meristem/metabolism , Microscopy, Confocal , Mutation , Organ Specificity/genetics , Plant Proteins/genetics , Plant Roots/genetics , Plants, Genetically Modified , RNA Stability/genetics , Reverse Transcriptase Polymerase Chain Reaction , Red Fluorescent Protein
5.
Mol Plant ; 9(6): 837-56, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27212387

ABSTRACT

Nitrogen (N) is an essential macronutrient that affects plant growth and development. N is an important component of chlorophyll, amino acids, nucleic acids, and secondary metabolites. Nitrate is one of the most abundant N sources in the soil. Because nitrate and other N nutrients are often limiting, plants have developed sophisticated mechanisms to ensure adequate supply of nutrients in a variable environment. Nitrate is absorbed in the root and mobilized to other organs by nitrate transporters. Nitrate sensing activates signaling pathways that impinge upon molecular, metabolic, physiological, and developmental responses locally and at the whole plant level. With the advent of genomics technologies and genetic tools, important advances in our understanding of nitrate and other N nutrient responses have been achieved in the past decade. Furthermore, techniques that take advantage of natural polymorphisms present in divergent individuals from a single species have been essential in uncovering new components. However, there are still gaps in our understanding of how nitrate signaling affects biological processes in plants. Moreover, we still lack an integrated view of how all the regulatory factors identified interact or crosstalk to orchestrate the myriad N responses plants typically exhibit. In this review, we provide an updated overview of mechanisms by which nitrate is sensed and transported throughout the plant. We discuss signaling components and how nitrate sensing crosstalks with hormonal pathways for developmental responses locally and globally in the plant. Understanding how nitrate impacts on plant metabolism, physiology, and growth and development in plants is key to improving crops for sustainable agriculture.


Subject(s)
Nitrates/metabolism , Plants/metabolism , Anion Transport Proteins/metabolism , Arabidopsis/metabolism , Nitrate Transporters , Signal Transduction/physiology
6.
Semin Cell Dev Biol ; 23(6): 648-54, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22273693

ABSTRACT

Nitrate (NO(3)(-)) is a major nutrient for plants, taken up by their roots from the soil. Plants are able to sense NO(3)(-) in their environment, allowing them to quickly respond to the dramatic fluctuations of its availability. Significant advances have been made during the recent period concerning the molecular mechanisms of NO(3)(-) sensing and signaling in the model plant Arabidopsis thaliana. The striking action of NO(3)(-) as a signal regulating genome expression has been unraveled. Note worthily, NO(3)(-) sensing systems have been identified. These correspond to membrane transporters also ensuring the uptake of NO(3)(-) into root cells, thus generalizing the nutrient 'transceptor' (transporter/receptor) concept defined in yeast. Furthermore, components of the downstream transduction cascades, such as transcription factors or kinases, have also been isolated. A breakthrough arising from this improved knowledge is a better understanding of the integration of NO(3)(-) and hormone signaling pathways, that explains the extraordinary developmental plasticity of plants in response to NO(3)(-).


Subject(s)
Nitrates/metabolism , Plants/metabolism , Anion Transport Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Indoleacetic Acids/metabolism , Plant Development , Plant Proteins/metabolism , Signal Transduction
7.
Plant Physiol ; 158(2): 1067-78, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22158677

ABSTRACT

In Arabidopsis (Arabidopsis thaliana), the NRT2.1 gene codes for the main component of the root nitrate (NO(3)(-)) high-affinity transport system (HATS). Due to the strong correlation generally found between high-affinity root NO(3)(-) influx and NRT2.1 mRNA level, it has been postulated that transcriptional regulation of NRT2.1 is a key mechanism for modulation of the HATS activity. However, this hypothesis has never been demonstrated, and is challenged by studies suggesting the occurrence of posttranscriptional regulation at the NRT2.1 protein level. To unambiguously clarify the respective roles of transcriptional and posttranscriptional regulations of NRT2.1, we generated transgenic lines expressing a functional 35S::NRT2.1 transgene in an atnrt2.1 mutant background. Despite a high and constitutive NRT2.1 transcript accumulation in the roots, the HATS activity was still down-regulated in the 35S::NRT2.1 transformants in response to repressive nitrogen or dark treatments that strongly reduce NRT2.1 transcription and NO(3)(-) HATS activity in the wild type. In some treatments, this was associated with a decline of NRT2.1 protein abundance, indicating posttranscriptional regulation of NRT2.1. However, in other instances, NRT2.1 protein level remained constant. Changes in abundance of NAR2.1, a partner protein of NRT2.1, closely followed those of NRT2.1, and thus could not explain the close-to-normal regulation of the HATS in the 35S::NRT2.1 transformants. Even if in certain conditions the transcriptional regulation of NRT2.1 contributes to a limited extent to the control of the HATS, we conclude from this study that posttranscriptional regulation of NRT2.1 and/or NAR2.1 plays a predominant role in the control of the NO(3)(-) HATS in Arabidopsis.


Subject(s)
Anion Transport Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Nitrates/metabolism , Plant Roots/metabolism , RNA Processing, Post-Transcriptional , Anion Transport Proteins/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Genetic Complementation Test , Plants, Genetically Modified , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...