Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ArXiv ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38903742

ABSTRACT

Metagenomic studies have primarily relied on de novo assembly for reconstructing genes and genomes from microbial mixtures. While reference-guided approaches have been employed in the assembly of single organisms, they have not been used in a metagenomic context. Here we describe the first effective approach for reference-guided metagenomic assembly that can complement and improve upon de novo metagenomic assembly methods for certain organisms. Such approaches will be increasingly useful as more genomes are sequenced and made publicly available.

2.
PNAS Nexus ; 3(2): pgae074, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38415223

ABSTRACT

The sensory cortices of the brain exhibit large-scale functional topographic organization, such as the tonotopic organization of the primary auditory cortex (A1) according to sound frequency. However, at the level of individual neurons, layer 2/3 (L2/3) A1 appears functionally heterogeneous. To identify if there exists a higher-order functional organization of meso-scale neuronal networks within L2/3 that bridges order and disorder, we used in vivo two-photon calcium imaging of pyramidal neurons to identify networks in three-dimensional volumes of L2/3 A1 in awake mice. Using tonal stimuli, we found diverse receptive fields with measurable colocalization of similarly tuned neurons across depth but less so across L2/3 sublayers. These results indicate a fractured microcolumnar organization with a column radius of ∼50 µm, with a more random organization of the receptive field over larger radii. We further characterized the functional networks formed within L2/3 by analyzing the spatial distribution of signal correlations (SCs). Networks show evidence of Rentian scaling in physical space, suggesting effective spatial embedding of subnetworks. Indeed, functional networks have characteristics of small-world topology, implying that there are clusters of functionally similar neurons with sparse connections between differently tuned neurons. These results indicate that underlying the regularity of the tonotopic map on large scales in L2/3 is significant tuning diversity arranged in a hybrid organization with microcolumnar structures and efficient network topologies.

3.
Front Neuroinform ; 17: 1082111, 2023.
Article in English | MEDLINE | ID: mdl-37181735

ABSTRACT

Multiphoton calcium imaging is one of the most powerful tools in modern neuroscience. However, multiphoton data require significant pre-processing of images and post-processing of extracted signals. As a result, many algorithms and pipelines have been developed for the analysis of multiphoton data, particularly two-photon imaging data. Most current studies use one of several algorithms and pipelines that are published and publicly available, and add customized upstream and downstream analysis elements to fit the needs of individual researchers. The vast differences in algorithm choices, parameter settings, pipeline composition, and data sources combine to make collaboration difficult, and raise questions about the reproducibility and robustness of experimental results. We present our solution, called NeuroWRAP (www.neurowrap.org), which is a tool that wraps multiple published algorithms together, and enables integration of custom algorithms. It enables development of collaborative, shareable custom workflows and reproducible data analysis for multiphoton calcium imaging data enabling easy collaboration between researchers. NeuroWRAP implements an approach to evaluate the sensitivity and robustness of the configured pipelines. When this sensitivity analysis is applied to a crucial step of image analysis, cell segmentation, we find a substantial difference between two popular workflows, CaImAn and Suite2p. NeuroWRAP harnesses this difference by introducing consensus analysis, utilizing two workflows in conjunction to significantly increase the trustworthiness and robustness of cell segmentation results.

4.
Phys Rev E ; 106(5-1): 054313, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559402

ABSTRACT

In this article, a correlation metric κ_{c} is proposed for the inference of the dynamical state of neuronal networks. κ_{C} is computed from the scaling of the correlation length with the size of the observation region, which shows qualitatively different behavior near and away from the critical point of a continuous phase transition. The implementation is first studied on a neuronal network model, where the results of this new metric coincide with those obtained from neuronal avalanche analysis, thus well characterizing the critical state of the network. The approach is further tested with brain optogenetic recordings in behaving mice from a publicly available database. Potential applications and limitations for its use with currently available optical imaging techniques are discussed.

5.
Elife ; 102021 06 28.
Article in English | MEDLINE | ID: mdl-34180397

ABSTRACT

Neuronal activity correlations are key to understanding how populations of neurons collectively encode information. While two-photon calcium imaging has created a unique opportunity to record the activity of large populations of neurons, existing methods for inferring correlations from these data face several challenges. First, the observations of spiking activity produced by two-photon imaging are temporally blurred and noisy. Secondly, even if the spiking data were perfectly recovered via deconvolution, inferring network-level features from binary spiking data is a challenging task due to the non-linear relation of neuronal spiking to endogenous and exogenous inputs. In this work, we propose a methodology to explicitly model and directly estimate signal and noise correlations from two-photon fluorescence observations, without requiring intermediate spike deconvolution. We provide theoretical guarantees on the performance of the proposed estimator and demonstrate its utility through applications to simulated and experimentally recorded data from the mouse auditory cortex.


Subject(s)
Calcium Signaling/physiology , Computer Simulation , Neurons/physiology , Signal Transduction/physiology , Action Potentials/physiology , Animals , Calcium/metabolism , Female , Mice , Models, Neurological
6.
Sci Rep ; 10(1): 10905, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616766

ABSTRACT

The primary auditory cortex (A1) plays a key role for sound perception since it represents one of the first cortical processing stations for sounds. Recent studies have shown that on the cellular level the frequency organization of A1 is more heterogeneous than previously appreciated. However, many of these studies were performed in mice on the C57BL/6 background which develop high frequency hearing loss with age making them a less optimal choice for auditory research. In contrast, mice on the CBA background retain better hearing sensitivity in old age. Since potential strain differences could exist in A1 organization between strains, we performed comparative analysis of neuronal populations in A1 of adult (~ 10 weeks) C57BL/6 mice and F1 (CBAxC57) mice. We used in vivo 2-photon imaging of pyramidal neurons in cortical layers L4 and L2/3 of awake mouse primary auditory cortex (A1) to characterize the populations of neurons that were active to tonal stimuli. Pure tones recruited neurons of widely ranging frequency preference in both layers and strains with neurons in F1 (CBAxC57) mice exhibiting a wider range of frequency preference particularly to higher frequencies. Frequency selectivity was slightly higher in C57BL/6 mice while neurons in F1 (CBAxC57) mice showed a greater sound-level sensitivity. The spatial heterogeneity of frequency preference was present in both strains with F1 (CBAxC57) mice exhibiting higher tuning diversity across all measured length scales. Our results demonstrate that the tone evoked responses and frequency representation in A1 of adult C57BL/6 and F1 (CBAxC57) mice are largely similar.


Subject(s)
Auditory Cortex/physiology , Acoustic Stimulation , Animals , Auditory Cortex/physiopathology , Cadherins/deficiency , Cadherins/genetics , Crosses, Genetic , Evoked Potentials, Auditory , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Microscopy, Confocal , Neuroimaging/methods , Presbycusis/genetics , Presbycusis/physiopathology , Pyramidal Cells/physiology
7.
Cereb Cortex ; 30(3): 1914-1930, 2020 03 14.
Article in English | MEDLINE | ID: mdl-31667495

ABSTRACT

During the critical period, neuronal connections are shaped by sensory experience. While the basis for this temporarily heightened plasticity remains unclear, shared connections introducing activity correlations likely play a key role. Thus, we investigated the changing intracortical connectivity in primary auditory cortex (A1) over development. In adult, layer 2/3 (L2/3) neurons receive ascending inputs from layer 4 (L4) and also receive few inputs from subgranular layer 5/6 (L5/6). We measured the spatial pattern of intracortical excitatory and inhibitory connections to L2/3 neurons in slices of mouse A1 across development using laser-scanning photostimulation. Before P11, L2/3 cells receive most excitatory input from within L2/3. Excitatory inputs from L2/3 and L4 increase after P5 and peak during P9-16. L5/6 inputs increase after P5 and provide most input during P12-16, the peak of the critical period. Inhibitory inputs followed a similar pattern. Functional circuit diversity in L2/3 emerges after P16. In vivo two-photon imaging shows low pairwise signal correlations in neighboring neurons before P11, which peak at P15-16 and decline after. Our results suggest that the critical period is characterized by high pairwise activity correlations and that transient hyperconnectivity of specific circuits, in particular those originating in L5/6, might play a key role.


Subject(s)
Auditory Cortex/physiology , Interneurons/physiology , Nerve Net/physiology , Neurons/physiology , Animals , Brain Mapping/methods , Critical Period, Psychological , Mice , Patch-Clamp Techniques/methods
8.
eNeuro ; 6(6)2019.
Article in English | MEDLINE | ID: mdl-31744840

ABSTRACT

Although within-modality sensory plasticity is limited to early developmental periods, cross-modal plasticity can occur even in adults. In vivo electrophysiological studies have shown that transient visual deprivation (dark exposure, DE) in adult mice improves the frequency selectivity and discrimination of neurons in thalamorecipient layer 4 (L4) of primary auditory cortex (A1). Since sound information is processed hierarchically in A1 by populations of neurons, we investigated whether DE alters network activity in A1 L4 and layer 2/3 (L2/3). We examined neuronal populations in both L4 and L2/3 using in vivo two-photon calcium (Ca2+) imaging of transgenic mice expressing GCaMP6s. We find that one week of DE in adult mice increased the sound evoked responses and frequency selectivity of both L4 and L2/3 neurons. Moreover, after DE the frequency representation changed with L4 and L2/3 showing a reduced representation of cells with best frequencies (BFs) between 8 and 16 kHz and an increased representation of cells with BFs above 32 kHz. Cells in L4 and L2/3 showed decreased pairwise signal correlations (SCs) consistent with sharper tuning curves. The decreases in SCs were larger in L4 than in L2/3. The decreased pairwise correlations indicate a sparsification of A1 responses to tonal stimuli. Thus, cross-modal experience in adults can both alter the sound-evoked responses of A1 neurons and change activity correlations within A1 potentially enhancing the encoding of auditory stimuli.


Subject(s)
Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Sensory Deprivation/physiology , Acoustic Stimulation , Animals , Calcium/metabolism , Mice , Mice, Transgenic , Patch-Clamp Techniques
9.
Front Syst Neurosci ; 13: 45, 2019.
Article in English | MEDLINE | ID: mdl-31551721

ABSTRACT

The primary auditory cortex processes acoustic sequences for the perception of behaviorally meaningful sounds such as speech. Sound information arrives at its input layer four from where activity propagates to associative layer 2/3. It is currently not known whether there is a characteristic organization of neuronal population activity across layers and sound levels during sound processing. Here, we identify neuronal avalanches, which in theory and experiments have been shown to maximize dynamic range and optimize information transfer within and across networks, in primary auditory cortex. We used in vivo 2-photon imaging of pyramidal neurons in cortical layers L4 and L2/3 of mouse A1 to characterize the populations of neurons that were active spontaneously, i.e., in the absence of a sound stimulus, and those recruited by single-frequency tonal stimuli at different sound levels. Single-frequency sounds recruited neurons of widely ranging frequency selectivity in both layers. We defined neuronal ensembles as neurons being active within or during successive temporal windows at the temporal resolution of our imaging. For both layers, neuronal ensembles were highly variable in size during spontaneous activity as well as during sound presentation. Ensemble sizes distributed according to power laws, the hallmark of neuronal avalanches, and were similar across sound levels. Avalanches activated by sound were composed of neurons with diverse tuning preference, yet with selectivity independent of avalanche size. Our results suggest that optimization principles identified for avalanches guide population activity in L4 and L2/3 of auditory cortex during and in-between stimulus processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...