Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Entropy (Basel) ; 21(6)2019 Jun 22.
Article in English | MEDLINE | ID: mdl-33267330

ABSTRACT

Data on the seasonally dry tropical forests of Mexico have been examined in the light of statistical mechanics. The results suggest a division into two classes of species. There are drifting populations of a cosmopolitan class capable of existing in most dry forest sites; these have a statistical distribution previously only observed (globally) for populations of alien species. We infer that a high proportion of species found only at a single site are specialists, endemics, and that these prefer sites comparatively low in species richness.

2.
Nature ; 417(6887): 437-40, 2002 May 23.
Article in English | MEDLINE | ID: mdl-12024212

ABSTRACT

Contemporary acceleration of biodiversity loss makes increasingly urgent the need to understand the controls of species coexistence. Tree diversity in particular plays a pivotal role in determining terrestrial biodiversity, through maintaining diversity of its dependent species and with them, their predators and parasites. Most theories of coexistence based on the principle of limiting similarity suggest that coexistence of competing species is inherently unstable; coexistence of competitors must be maintained by external forces such as disturbance, immigration or 'patchiness' of resources in space and time. In contrast, storage theory postulates stable coexistence of competing species through temporal alternation of conditions favouring recruitment of one species over the other. Here we use storage theory to develop explicit predictions for relative differences between competitors that allow us to discriminate between coexistence models. Data on tree species from a primary forest on the Mexican Pacific coast support a general dynamic of storage processes determining coexistence of similar tree species in this community, and allow us to reject all other theories of coexistence.


Subject(s)
Ecosystem , Trees/physiology , Mexico , Models, Biological , Population Density , Species Specificity , Trees/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL