Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
3.
Cells ; 13(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39273015

ABSTRACT

Uterine leiomyosarcoma (uLMS) is the most common type of uterine sarcoma, associated with poor prognosis, high rates of recurrence, and metastasis. Currently, the molecular mechanism of the origin and development of uLMS is limited. Bromodomain and extra-terminal (BET) proteins are involved in both physiological and pathological events. However, the role of BET proteins in the pathogenesis of uLMS is unknown. Here, we show for the first time that BET protein family members, BRD2, BRD3, and BRD4, are aberrantly overexpressed in uLMS tissues compared to the myometrium, with a significant change by histochemical scoring assessment. Furthermore, inhibiting BET proteins with their small, potent inhibitors (JQ1 and I-BET 762) significantly inhibited the uLMS proliferation dose-dependently via cell cycle arrest. Notably, RNA-sequencing analysis revealed that the inhibition of BET proteins with JQ1 and I-BET 762 altered several critical pathways, including the hedgehog pathway, EMT, and transcription factor-driven pathways in uLMS. In addition, the targeted inhibition of BET proteins altered several other epigenetic regulators, including DNA methylases, histone modification, and m6A regulators. The connections between BET proteins and crucial biological pathways provide a fundamental structure to better understand uterine diseases, particularly uLMS pathogenesis. Accordingly, targeting the vulnerable epigenome may provide an additional regulatory mechanism for uterine cancer treatment.


Subject(s)
Leiomyosarcoma , Transcription Factors , Uterine Neoplasms , Humans , Female , Leiomyosarcoma/metabolism , Leiomyosarcoma/pathology , Leiomyosarcoma/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Uterine Neoplasms/genetics , Transcription Factors/metabolism , Cell Proliferation , Azepines/pharmacology , Gene Expression Regulation, Neoplastic , Triazoles/pharmacology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Epigenesis, Genetic , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Middle Aged , Bromodomain Containing Proteins , Benzodiazepines , Proteins
4.
Mol Cell ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39321804

ABSTRACT

The eukaryotic transcriptional Mediator comprises a large core (cMED) and a dissociable CDK8 kinase module (CKM). cMED recruits RNA polymerase II (RNA Pol II) and promotes pre-initiation complex formation in a manner repressed by the CKM through mechanisms presently unknown. Herein, we report cryoelectron microscopy structures of the complete human Mediator and its CKM. The CKM binds to multiple regions on cMED through both MED12 and MED13, including a large intrinsically disordered region (IDR) in the latter. MED12 and MED13 together anchor the CKM to the cMED hook, positioning CDK8 downstream and proximal to the transcription start site. Notably, the MED13 IDR obstructs the recruitment of RNA Pol II/MED26 onto cMED by direct occlusion of their respective binding sites, leading to functional repression of cMED-dependent transcription. Combined with biochemical and functional analyses, these structures provide a conserved mechanistic framework to explain the basis for CKM-mediated repression of cMED function.

5.
Int J Lab Hematol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231460

ABSTRACT

INTRODUCTION: Hematopoietic stem cell transplantation (HCST) is a widely used therapy in the management of hematological malignancies, leading to cytopenias that require transient transfusions. Platelet recovery (PR) following HSCT is assessed by monitoring platelet count (PC). Immature platelet fraction (IPF) is a research parameter offered by Sysmex® on XN series analyzers, enabling rapid diagnostic orientation in the event of thrombocytopenia. It has also been described as a predictive factor for PR after chemotherapy or HSCT, and thresholds have been proposed. METHODS: The objective of this study was to assess the predictive capability of IPF for PR in a prospective cohort of patients undergoing HSCT and to evaluate its utility in guiding platelet transfusion decision. RESULTS: An optimized A-IPF (absolute number of IPF) threshold of 2.5 × 109/L was predictive of a PC greater than 50 × 109/L at day 30 with a sensitivity of 78.9%, specificity of 78.6%, positive predictive value (PPV) of 83.3% and negative predictive value (NPV) of 73.3%. We were able to distinguish patients recovering PC before day 15 with an earlier %IPF peak, greater IPF recovery kinetics and faster neutrophil recovery. CONCLUSION: A-IPF shows promise as a predictor of PR following HSCT. A multicenter study could help confirm both A-IPF and %IPF (IPF) clinical utility before it is made available to clinicians.

7.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39005267

ABSTRACT

The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), regulates RNA Polymerase II (Pol II)-dependent transcription. cMED recruits Pol II and promotes pre-initiation complex (PIC) formation in a manner inhibited by the CKM, which is also implicated in post-initiation control of gene expression. Herein we report cryo-electron microscopy structures of the human complete Mediator and its CKM, which explains the basis for CKM inhibition of cMED-activated transcription. The CKM binds to cMED through an intrinsically disordered region (IDR) in MED13 and HEAT repeats in MED12. The CKM inhibits transcription by allocating its MED13 IDR to occlude binding of Pol II and MED26 to cMED and further obstructing cMED-PIC assembly through steric hindrance with TFIIH and the +1 nucleosome. Notably, MED12 binds to the cMED Hook, positioning CDK8 downstream of the transcription start site, which sheds new light on its stimulatory function in post-initiation events.

8.
Cell Rep ; 43(2): 113773, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38350444

ABSTRACT

Hepatocellular carcinoma (HCC) is an inflammation-associated cancer arising from viral or non-viral etiologies including steatotic liver diseases (SLDs). Expansion of immunosuppressive myeloid cells is a hallmark of inflammation and cancer, but their heterogeneity in HCC is not fully resolved and might underlie immunotherapy resistance. Here, we present a high-resolution atlas of innate immune cells from patients with HCC that unravels an SLD-associated contexture characterized by influx of inflammatory and immunosuppressive myeloid cells, including a discrete population of THBS1+ regulatory myeloid (Mreg) cells expressing monocyte- and neutrophil-affiliated genes. THBS1+ Mreg cells expand in SLD-associated HCC, populate fibrotic lesions, and are associated with poor prognosis. THBS1+ Mreg cells are CD163+ but distinguished from macrophages by high expression of triggering receptor expressed on myeloid cells 1 (TREM1), which contributes to their immunosuppressive activity and promotes HCC tumor growth in vivo. Our data support myeloid subset-targeted immunotherapies to treat HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Triggering Receptor Expressed on Myeloid Cells-1 , Immunosuppression Therapy , Myeloid Cells , Immunosuppressive Agents , Inflammation
9.
Int J Mol Sci ; 25(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38255982

ABSTRACT

Bromodomain-containing proteins (BRDs) are involved in many biological processes, most notably epigenetic regulation of transcription, and BRD dysfunction has been linked to many diseases, including tumorigenesis. However, the role of BRDs in the pathogenesis of uterine fibroids (UFs) is entirely unknown. The present study aimed to determine the expression pattern of BRD9 in UFs and matched myometrium and further assess the impact of a BRD9 inhibitor on UF phenotype and epigenetic/epitranscriptomic changes. Our studies demonstrated that the levels of BRD9 were significantly upregulated in UFs compared to matched myometrium, suggesting that the aberrant BRD expression may contribute to the pathogenesis of UFs. We then evaluated the potential roles of BRD9 using its specific inhibitor, I-BRD9. Targeted inhibition of BRD9 suppressed UF tumorigenesis with increased apoptosis and cell cycle arrest, decreased cell proliferation, and extracellular matrix deposition in UF cells. The latter is the key hallmark of UFs. Unbiased transcriptomic profiling coupled with downstream bioinformatics analysis further and extensively demonstrated that targeted inhibition of BRD9 impacted the cell cycle- and ECM-related biological pathways and reprogrammed the UF cell epigenome and epitranscriptome in UFs. Taken together, our studies support the critical role of BRD9 in UF cells and the strong interconnection between BRD9 and other pathways controlling the UF progression. Targeted inhibition of BRDs might provide a non-hormonal treatment option for this most common benign tumor in women of reproductive age.


Subject(s)
Epigenome , Leiomyoma , Humans , Female , Epigenesis, Genetic , Bromodomain Containing Proteins , Leiomyoma/genetics , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Transcription Factors , Signal Transduction
10.
Mol Oncol ; 18(6): 1571-1592, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38234211

ABSTRACT

Calcium is a ubiquitous messenger that regulates a wide range of cellular functions, but its involvement in the pathophysiology of acute myeloid leukemia (AML) is not widely investigated. Here, we identified, from an analysis of The Cancer Genome Atlas and genotype-tissue expression databases, stromal interaction molecule 2 (STIM2) as being highly expressed in AML with monocytic differentiation and negatively correlated with overall survival. This was confirmed on a validation cohort of 407 AML patients. We then investigated the role of STIM2 in cell proliferation, differentiation, and survival in two leukemic cell lines with monocytic potential and in normal hematopoietic stem cells. STIM2 expression increased at the RNA and protein levels upon monocyte differentiation. Phenotypically, STIM2 knockdown drastically inhibited cell proliferation and induced genomic stress with DNA double-strand breaks, as shown by increased levels of phosphorylate histone H2AXγ (p-H2AXγ), followed by activation of the cellular tumor antigen p53 pathway, decreased expression of cell cycle regulators such as cyclin-dependent kinase 1 (CDK1)-cyclin B1 and M-phase inducer phosphatase 3 (CDC25c), and a decreased apoptosis threshold with a low antiapoptotic/proapoptotic protein ratio. Our study reports STIM2 as a new actor regulating genomic stability and p53 response in terms of cell cycle and apoptosis of human normal and malignant monocytic cells.


Subject(s)
Apoptosis , Cell Cycle , Leukemia, Myeloid, Acute , Monocytes , Stromal Interaction Molecule 2 , Humans , Apoptosis/genetics , Monocytes/metabolism , Monocytes/pathology , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , Stromal Interaction Molecule 2/metabolism , Stromal Interaction Molecule 2/genetics , Cell Cycle/genetics , Cell Proliferation , Cell Line, Tumor , Cell Differentiation , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Female , Male
11.
Int J Mol Sci ; 24(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894728

ABSTRACT

Breast cancers regroup many heterogeneous diseases unevenly responding to currently available therapies. Approximately 70-80% of breast cancers express hormone (estrogen or progesterone) receptors. Patients with these hormone-dependent breast malignancies benefit from therapies targeting endocrine pathways. Nevertheless, metastatic disease remains a major challenge despite available treatments, and relapses frequently ensue. By improving patient survival and quality of life, cancer immunotherapies have sparked considerable enthusiasm and hope in the last decade but have led to only limited success in breast cancers. In addition, only patients with hormone-independent breast cancers seem to benefit from these immune-based approaches. The present review examines and discusses the current literature related to the role of hormone receptor signaling (specifically, an estrogen receptor) and the impact of its modulation on the sensitivity of breast cancer cells to the effector mechanisms of anti-tumor immune responses and on the capability of breast cancers to escape from protective anti-cancer immunity. Future research prospects related to the possibility of promoting the efficacy of immune-based interventions using hormone therapy agents are considered.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Quality of Life , Neoplasm Recurrence, Local , Signal Transduction , Estrogens , Receptors, Progesterone/metabolism , Drug Resistance, Neoplasm
12.
JCI Insight ; 8(18)2023 09 22.
Article in English | MEDLINE | ID: mdl-37607000

ABSTRACT

Uterine leiomyomas cause heavy menstrual bleeding, anemia, and pregnancy loss in millions of women worldwide. Driver mutations in the transcriptional mediator complex subunit 12 (MED12) gene in uterine myometrial cells initiate 70% of leiomyomas that grow in a progesterone-dependent manner. We showed a distinct chromatin occupancy landscape of MED12 in mutant MED12 (mut-MED12) versus WT-MED12 leiomyomas. Integration of cistromic and transcriptomics data identified tryptophan 2,3-dioxygenase (TDO2) as the top mut-MED12 target gene that was significantly upregulated in mut-MED12 leiomyomas when compared with adjacent myometrium and WT-MED12 leiomyomas. TDO2 catalyzes the conversion of tryptophan to kynurenine, an aryl hydrocarbon receptor (AHR) ligand that we confirmed to be significantly elevated in mut-MED12 leiomyomas. Treatment of primary mut-MED12 leiomyoma cells with tryptophan or kynurenine stimulated AHR nuclear translocation, increased proliferation, inhibited apoptosis, and induced AHR-target gene expression, whereas blocking the TDO2/kynurenine/AHR pathway by siRNA or pharmacological treatment abolished these effects. Progesterone receptors regulated the expression of AHR and its target genes. In vivo, TDO2 expression positively correlated with the expression of genes crucial for leiomyoma growth. In summary, activation of the TDO2/kynurenine/AHR pathway selectively in mut-MED12 leiomyomas promoted tumor growth and may inform the future development of targeted treatments and precision medicine.


Subject(s)
Leiomyoma , Uterine Neoplasms , Female , Humans , Tryptophan , Kynurenine/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Tryptophan Oxygenase/genetics , Tryptophan Oxygenase/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Leiomyoma/genetics , Leiomyoma/metabolism , Leiomyoma/pathology , Mutation , Mediator Complex/genetics , Mediator Complex/metabolism
13.
N Engl J Med ; 389(6): 527-539, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37342957

ABSTRACT

BACKGROUND: Increasing evidence links genetic defects affecting actin-regulatory proteins to diseases with severe autoimmunity and autoinflammation, yet the underlying molecular mechanisms are poorly understood. Dedicator of cytokinesis 11 (DOCK11) activates the small Rho guanosine triphosphatase (GTPase) cell division cycle 42 (CDC42), a central regulator of actin cytoskeleton dynamics. The role of DOCK11 in human immune-cell function and disease remains unknown. METHODS: We conducted genetic, immunologic, and molecular assays in four patients from four unrelated families who presented with infections, early-onset severe immune dysregulation, normocytic anemia of variable severity associated with anisopoikilocytosis, and developmental delay. Functional assays were performed in patient-derived cells, as well as in mouse and zebrafish models. RESULTS: We identified rare, X-linked germline mutations in DOCK11 in the patients, leading to a loss of protein expression in two patients and impaired CDC42 activation in all four patients. Patient-derived T cells did not form filopodia and showed abnormal migration. In addition, the patient-derived T cells, as well as the T cells from Dock11-knockout mice, showed overt activation and production of proinflammatory cytokines that were associated with an increased degree of nuclear translocation of nuclear factor of activated T cell 1 (NFATc1). Anemia and aberrant erythrocyte morphologic features were recapitulated in a newly generated dock11-knockout zebrafish model, and anemia was amenable to rescue on ectopic expression of constitutively active CDC42. CONCLUSIONS: Germline hemizygous loss-of-function mutations affecting the actin regulator DOCK11 were shown to cause a previously unknown inborn error of hematopoiesis and immunity characterized by severe immune dysregulation and systemic inflammation, recurrent infections, and anemia. (Funded by the European Research Council and others.).


Subject(s)
Actins , Anemia , Guanine Nucleotide Exchange Factors , Inflammation , Animals , Humans , Mice , Actins/genetics , Actins/metabolism , Anemia/etiology , Anemia/genetics , Disease Models, Animal , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/genetics , Hematopoiesis , Inflammation/etiology , Inflammation/genetics , Zebrafish/genetics , Zebrafish/metabolism
14.
Haematologica ; 108(9): 2435-2443, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36924240

ABSTRACT

The diagnosis of myelodysplastic syndromes (MDS) might be challenging and relies on the convergence of cytological, cytogenetic, and molecular factors. Multiparametric flow cytometry (MFC) helps diagnose MDS, especially when other features do not contribute to the decision-making process, but its usefulness remains underestimated, mostly due to a lack of standardization of cytometers. We present here an innovative model integrating artificial intelligence (AI) with MFC to improve the diagnosis and the classification of MDS. We develop a machine learning model through an elasticnet algorithm directed on a cohort of 191 patients, only based on flow cytometry parameters selected by the Boruta algorithm, to build a simple but reliable prediction score with five parameters. Our AI-assisted MDS prediction score greatly improves the sensitivity of the Ogata score while keeping an excellent specificity validated on an external cohort of 89 patients with an Area Under the Curve of 0.935. This model allows the diagnosis of both high- and low-risk MDS with 91.8% sensitivity and 92.5% specificity. Interestingly, it highlights a progressive evolution of the score from clonal hematopoiesis of indeterminate potential (CHIP) to highrisk MDS, suggesting a linear evolution between these different stages. By significantly decreasing the overall misclassification of 52% for patients with MDS and of 31.3% for those without MDS (P=0.02), our AI-assisted prediction score outperforms the Ogata score and positions itself as a reliable tool to help diagnose MDS.


Subject(s)
Artificial Intelligence , Myelodysplastic Syndromes , Humans , Flow Cytometry , Myelodysplastic Syndromes/diagnosis , Machine Learning
15.
J Cell Mol Med ; 27(2): 174-188, 2023 01.
Article in English | MEDLINE | ID: mdl-36578217

ABSTRACT

Among histone deacetylases, HDAC6 is unusual in its cytoplasmic localization. Its inhibition leads to hyperacetylation of non-histone proteins, inhibiting cell cycle, proliferation and apoptosis. Ricolinostat (ACY-1215) is a selective inhibitor of the histone deacetylase HDAC6 with proven efficacy in the treatment of malignant diseases, but anaemia is one of the most frequent side effects. We investigated here the underlying mechanisms of this erythroid toxicity. We first confirmed that HDAC6 was strongly expressed at both RNA and protein levels in CD34+ -cells-derived erythroid progenitors. ACY-1215 exposure on CD34+ -cells driven in vitro towards the erythroid lineage led to a decreased cell count, an increased apoptotic rate and a delayed erythroid differentiation with accumulation of weakly hemoglobinized immature erythroblasts. This was accompanied by drastic changes in the transcriptomic profile of primary cells as shown by RNAseq. In erythroid cells, ACY-1215 and shRNA-mediated HDAC6 knockdown inhibited the EPO-dependent JAK2 phosphorylation. Using acetylome, we identified 14-3-3ζ, known to interact directly with the JAK2 negative regulator LNK, as a potential HDAC6 target in erythroid cells. We confirmed that 14-3-3ζ was hyperacetylated after ACY-1215 exposure, which decreased the 14-3-3ζ/LNK interaction while increased LNK ability to interact with JAK2. Thus, in addition to its previously described role in the enucleation of mouse fetal liver erythroblasts, we identified here a new mechanism of HDAC6-dependent control of erythropoiesis through 14-3-3ζ acetylation level, LNK availability and finally JAK2 activation in response to EPO, which is crucial downstream of EPO-R activation for human erythroid cell survival, proliferation and differentiation.


Subject(s)
14-3-3 Proteins , Signal Transduction , Mice , Animals , Humans , 14-3-3 Proteins/metabolism , Hydroxamic Acids/pharmacology , Cell Differentiation/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism
17.
Cells ; 11(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36497061

ABSTRACT

Uterine leiomyosarcoma (uLMS) is the most frequent subtype of uterine sarcoma that presents a poor prognosis, high rates of recurrence, and metastasis. Currently, the molecular mechanism of the origin and development of uLMS is unknown. Class I histone deacetylases (including HDAC1, 2, 3, and 8) are one of the major classes of the HDAC family and catalyze the removal of acetyl groups from lysine residues in histones and cellular proteins. Class I HDACs exhibit distinct cellular and subcellular expression patterns and are involved in many biological processes and diseases through diverse signaling pathways. However, the link between class I HDACs and uLMS is still being determined. In this study, we assessed the expression panel of Class I HDACs in uLMS and characterized the role and mechanism of class I HDACs in the pathogenesis of uLMS. Immunohistochemistry analysis revealed that HDAC1, 2, and 3 are aberrantly upregulated in uLMS tissues compared to adjacent myometrium. Immunoblot analysis demonstrated that the expression levels of HDAC 1, 2, and 3 exhibited a graded increase from normal and benign to malignant uterine tumor cells. Furthermore, inhibition of HDACs with Class I HDACs inhibitor (Tucidinostat) decreased the uLMS proliferation in a dose-dependent manner. Notably, gene set enrichment analysis of differentially expressed genes (DEGs) revealed that inhibition of HDACs with Tucidinostat altered several critical pathways. Moreover, multiple epigenetic analyses suggested that Tucidinostat may alter the transcriptome via reprogramming the oncogenic epigenome and inducing the changes in microRNA-target interaction in uLMS cells. In the parallel study, we also determined the effect of DL-sulforaphane on the uLMS. Our study demonstrated the relevance of class I HDACs proteins in the pathogenesis of malignant uLMS. Further understanding the role and mechanism of HDACs in uLMS may provide a promising and novel strategy for treating patients with this aggressive uterine cancer.


Subject(s)
Leiomyosarcoma , Uterine Neoplasms , Female , Humans , Histone Deacetylases/metabolism , Leiomyosarcoma/drug therapy , Leiomyosarcoma/genetics , Leiomyosarcoma/pathology , Uterine Neoplasms/drug therapy , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Myometrium/metabolism
18.
Clin Cancer Res ; 28(23): 5211-5220, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36201165

ABSTRACT

PURPOSE: To provide insights into the diagnosis and management of therapy-related myeloid neoplasms (t-MN) following PARP inhibitors (PARPi). EXPERIMENTAL DESIGN: In a French cancer center, we identified and described the profiles of 13 t-MN diagnosed among 37 patients with ovarian cancer referred to hematology consultation for cytopenia under PARPi. Next, we described these 13 t-MN post-PARPi among 37 t-MN post ovarian cancer according to PARPi exposure. Finally, we described 69 t-MN post-PARPi in a national cohort. RESULTS: From 2016 to 2021, cumulative incidence of t-MN was 3.5% (13/373) among patients with ovarian cancer treated with PARPi. At time of hematologic consultation, patients with t-MN had a longer PARPi exposure (9 vs. 3 months, P = 0.01), lower platelet count (74 vs. 173 G/L, P = 0.0005), and more cytopenias (2 vs. 1, P = 0.0005). Compared with t-MN not exposed to PARPi, patients with t-MN-PARPi had more BRCA1/2 germline mutation (61.5% vs. 0%, P = 0.03) but similar overall survival (OS). In the national cohort, most t-MN post-PARPi had a complex karyotype (61%) associated with a high rate of TP53 mutation (71%). Median OS was 9.6 months (interquartile range, 4-14.6). In multivariate analysis, a longer time between end of PARPi and t-MN (HR, 1.046; P = 0.02), olaparib compared with other PARPi (HR, 5.82; P = 0.003) and acute myeloid leukemia (HR, 2.485; P = 0.01) were associated with shorter OS. CONCLUSIONS: In a large series, we described a high incidence of t-MN post-PARPi associated with unfavorable cytogenetic and molecular abnormalities leading to poor OS. Early detection is crucial, particularly in cases of delayed cytopenia.


Subject(s)
Neoplasms, Second Primary , Ovarian Neoplasms , Female , Humans , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Carcinoma, Ovarian Epithelial , Mutation , Germ-Line Mutation , Neoplasms, Second Primary/diagnosis , Neoplasms, Second Primary/epidemiology
19.
EBioMedicine ; 83: 104209, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35986949

ABSTRACT

BACKGROUND: Schistocyte counts are a cornerstone of the diagnosis of thrombotic microangiopathy syndrome (TMA). Their manual quantification is complex and alternative automated methods suffer from pitfalls that limit their use. We report a method combining imaging flow cytometry (IFC) and artificial intelligence for the direct label-free and operator-independent quantification of schistocytes in whole blood. METHODS: We used 135,045 IFC images from blood acquisition among 14 patients to extract 188 features with IDEAS® software and 128 features from a convolutional neural network (CNN) with Keras framework in order to train a support vector machine (SVM) blood elements' classifier used for schistocytes quantification. FINDING: Keras features showed better accuracy (94.03%, CI: 93.75-94.31%) than ideas features (91.54%, CI: 91.21-91.87%) in recognising whole-blood elements, and together they showed the best accuracy (95.64%, CI: 95.39-95.88%). We obtained an excellent correlation (0.93, CI: 0.90-0.96) between three haematologists and our method on a cohort of 102 patient samples. All patients with schistocytosis (>1% schistocytes) were detected with excellent specificity (91.3%, CI: 82.0-96.7%) and sensitivity (100%, CI: 89.4-100.0%). We confirmed these results with a similar specificity (91.1%, CI: 78.8-97.5%) and sensitivity (100%, CI: 88.1-100.0%) on a validation cohort (n=74) analysed in an independent healthcare centre. Simultaneous analysis of 16 samples in both study centres showed a very good correlation between the 2 imaging flow cytometers (Y=1.001x). INTERPRETATION: We demonstrate that IFC can represent a reliable tool for operator-independent schistocyte quantification with no pre-analytical processing which is of most importance in emergency situations such as TMA. FUNDING: None.


Subject(s)
Artificial Intelligence , Support Vector Machine , Erythrocytes, Abnormal , Flow Cytometry , Humans , Machine Learning
20.
J Clin Invest ; 132(20)2022 10 17.
Article in English | MEDLINE | ID: mdl-36006697

ABSTRACT

Initiation and maintenance of transcriptional states are critical for controlling normal tissue homeostasis and differentiation. The cyclin dependent kinases CDK8 and CDK19 (Mediator kinases) are regulatory components of Mediator, a highly conserved complex that orchestrates enhancer-mediated transcriptional output. While Mediator kinases have been implicated in the transcription of genes necessary for development and growth, its function in mammals has not been well defined. Using genetically defined models and pharmacological inhibitors, we showed that CDK8 and CDK19 function in a redundant manner to regulate intestinal lineage specification in humans and mice. The Mediator kinase module bound and phosphorylated key components of the chromatin remodeling complex switch/sucrose non-fermentable (SWI/SNF) in intestinal epithelial cells. Concomitantly, SWI/SNF and MED12-Mediator colocalized at distinct lineage-specifying enhancers in a CDK8/19-dependent manner. Thus, these studies reveal a transcriptional mechanism of intestinal cell specification, coordinated by the interaction between the chromatin remodeling complex SWI/SNF and Mediator kinase.


Subject(s)
Chromatin Assembly and Disassembly , Sucrose , Animals , Chromatin/genetics , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , Cyclins/metabolism , Homeostasis , Humans , Mammals/genetics , Mammals/metabolism , Mice , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL