Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Alcohol Clin Exp Res ; 43(3): 439-452, 2019 03.
Article in English | MEDLINE | ID: mdl-30589433

ABSTRACT

BACKGROUND: Fetal alcohol spectrum disorders (FASD) have a strong genetic component although the genes that underlie this are only beginning to be elucidated. In the present study, one of the most common phenotypes of FASD, cell death within the early developing neural tube, was examined across a genetic reference population in a reverse genetics paradigm with the goal of identifying genetic loci that could influence ethanol (EtOH)-induced apoptosis in the early developing neural tube. METHODS: BXD recombinant inbred mice as well as the parental strains were used to evaluate genetic differences in EtOH-induced cell death after exposure on embryonic day 9.5. Dams were given either 5.8 g/kg EtOH or isocaloric maltose-dextrin in 2 doses via intragastric gavage. Embryos were collected 7 hours after the initial exposure and cell death evaluated via TUNEL staining in the brainstem and forebrain. Genetic loci were evaluated using quantitative trait locus (QTL) analysis at GeneNetwork.org. RESULTS: Significant strain differences were observed in the levels of EtOH-induced cell death that were due to genetic effects and not confounding variables such as differences in developmental maturity or cell death kinetics. Comparisons between the 2 regions of the developing neural tube showed little genetic correlation with the QTL maps exhibiting no overlap. Significant QTLs were found on murine mid-chromosome 4 and mid-chromosome 14 only in the brainstem. Within these chromosomal loci, a number of interesting candidate genes were identified that could mediate this differential sensitivity including Nfia (nuclear factor I/A) and Otx2 (orthodenticle homeobox 2). CONCLUSIONS: These studies demonstrate that the levels of EtOH-induced cell death occur in strain- and region-dependent manners. Novel QTLs on mouse Chr4 and Chr14 were identified that modulate the differential sensitivity to EtOH-induced apoptosis in the embryonic brainstem. The genes underlying these QTLs could identify novel molecular pathways that are critical in this phenotype.


Subject(s)
Apoptosis/drug effects , Apoptosis/genetics , Ethanol/adverse effects , Neural Tube/drug effects , Animals , Brain Stem/drug effects , Ethanol/blood , Female , Mice , Mice, Inbred Strains , Pregnancy/drug effects , Prosencephalon/drug effects , Quantitative Trait Loci , Species Specificity
2.
Front Genet ; 5: 203, 2014.
Article in English | MEDLINE | ID: mdl-25076964

ABSTRACT

While genetics impacts the type and severity of damage following developmental ethanol exposure, little is currently known about the molecular pathways that mediate these effects. Traditionally, research in this area has used a candidate gene approach and evaluated effects on a gene-by-gene basis. Recent studies, however, have begun to use unbiased approaches and genetic reference populations to evaluate the roles of genotype and epigenetic modifications in phenotypic changes following developmental ethanol exposure, similar to studies that evaluated numerous alcohol-related phenotypes in adults. Here, we present work assessing the role of genetics and chromatin-based alterations in mediating ethanol-induced apoptosis in the developing nervous system. Utilizing the expanded family of BXD recombinant inbred mice, animals were exposed to ethanol at postnatal day 7 via subcutaneous injection (5.0 g/kg in 2 doses). Tissue was collected 7 h after the initial ethanol treatment and analyzed by activated caspase-3 immunostaining to visualize dying cells in the cerebral cortex and hippocampus. In parallel, the levels of two histone modifications relevant to apoptosis, γH2AX and H3K14 acetylation, were examined in the cerebral cortex using protein blot analysis. Activated caspase-3 staining identified marked differences in cell death across brain regions between different mouse strains. Genetic analysis of ethanol susceptibility in the hippocampus led to the identification of a quantitative trait locus on chromosome 12, which mediates, at least in part, strain-specific differential vulnerability to ethanol-induced apoptosis. Furthermore, analysis of chromatin modifications in the cerebral cortex revealed a global increase in γH2AX levels following ethanol exposure, but did not show any change in H3K14 acetylation levels. Together, these findings provide new insights into the molecular mechanisms and genetic contributions underlying ethanol-induced neurodegeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...