Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
J Mol Biol ; 436(14): 168591, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38677493

ABSTRACT

De novo protein folding into a native three-dimensional structure is indispensable for biological function, is instructed by its amino acid sequence, and occurs along a vectorial trajectory. The human proteome contains thousands of membrane-spanning proteins, whose biosynthesis begins on endoplasmic reticulum-associated ribosomes. Nearly half of all membrane proteins traverse the membrane more than once, including therapeutically important protein families such as solute carriers, G-protein-coupled receptors, and ABC transporters. These mediate a variety of functions like signal transduction and solute transport and are often of vital importance for cell function and tissue homeostasis. Missense mutations in multispan membrane proteins can lead to misfolding and cause disease; an example is the ABC transporter Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Even though our understanding of multispan membrane-protein folding still is rather rudimental, the cumulative knowledge of 20 years of basic research on CFTR folding has led to development of drugs that modulate the misfolded protein. This has provided the prospect of a life without CF to the vast majority of patients. In this review we describe our understanding of the folding pathway of CFTR in cells, which is modular and tolerates many defects, making it effective and robust. We address how modulator drugs affect folding and function of CFTR, and distinguish protein stability from its folding process. Since the domain architecture of (mammalian) ABC transporters are highly conserved, we anticipate that the insights we discuss here for folding of CFTR may lay the groundwork for understanding the general rules of ABC-transporter folding.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Protein Folding , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Animals , Endoplasmic Reticulum/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/drug therapy
2.
Int J Mol Sci ; 24(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37958724

ABSTRACT

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a large multi-spanning membrane protein that is susceptible to misfolding and aggregation. We have identified here the region responsible for this instability. Temperature-induced aggregation of C-terminally truncated versions of CFTR demonstrated that all truncations up to the second transmembrane domain (TMD2), including the R region, largely resisted aggregation. Limited proteolysis identified a folded structure that was prone to aggregation and consisted of TMD2 and at least part of the Regulatory Region R. Only when both TM7 (TransMembrane helix 7) and TM8 were present, TMD2 fragments became as aggregation-sensitive as wild-type CFTR, in line with increased thermo-instability of late CFTR nascent chains and in silico prediction of aggregation propensity. In accord, isolated TMD2 was degraded faster in cells than isolated TMD1. We conclude that TMD2 extended at its N-terminus with part of the R region forms a protease-resistant structure that induces heat instability in CFTR and may be responsible for its limited intracellular stability.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Hot Temperature , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cell Membrane/metabolism , Proteolysis , Temperature
4.
Cell Mol Life Sci ; 80(1): 33, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36609925

ABSTRACT

The question how proteins fold is especially pointed for large multi-domain, multi-spanning membrane proteins with complex topologies. We have uncovered the sequence of events that encompass proper folding of the ABC transporter CFTR in live cells by combining kinetic radiolabeling with protease-susceptibility assays. We found that CFTR folds in two clearly distinct stages. The first, co-translational, stage involves folding of the 2 transmembrane domains TMD1 and TMD2, plus one nucleotide-binding domain, NBD1. The second stage is a simultaneous, post-translational increase in protease resistance for both TMDs and NBD2, caused by assembly of these domains onto NBD1. Our assays probe every 2-3 residues (on average) in CFTR. This in-depth analysis at amino-acid level allows detailed analysis of domain folding and importantly also the next level: assembly of the domains into native, folded CFTR. Defects and changes brought about by medicines, chaperones, or mutations also are amenable to analysis. We here show that the well-known disease-causing mutation F508del, which established cystic fibrosis as protein-folding disease, caused co-translational misfolding of NBD1 but not TMD1 nor TMD2 in stage 1, leading to absence of stage-2 folding. Corrector drugs rescued stage 2 without rescuing NBD1. Likewise, the DxD motif in NBD1 that was identified to be required for export of CFTR from the ER we found to be required already upstream of export as CFTR mutated in this motif phenocopies F508del CFTR. The highly modular and stepwise folding process of such a large, complex protein explains the relatively high fidelity and correctability of its folding.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Protein Structure, Tertiary , Cystic Fibrosis/genetics , Mutation , Peptide Hydrolases/genetics , Protein Folding
5.
J Cyst Fibros ; 22 Suppl 1: S5-S11, 2023 03.
Article in English | MEDLINE | ID: mdl-36216744

ABSTRACT

The root cause of cystic fibrosis (CF), the most common life-shortening genetic disease in the Caucasian population, is the loss of function of the CFTR protein, which serves as a phosphorylation-activated, ATP-gated anion channel in numerous epithelia-lining tissues. In the past decade, high-throughput drug screening has made a significant stride in developing highly effective CFTR modulators for the treatment of CF. Meanwhile, structural-biology studies have succeeded in solving the high-resolution three-dimensional (3D) structure of CFTR in different conformations. Here, we provide a brief overview of some striking features of CFTR folding, function and pharmacology, in light of its specific structural features within the ABC-transporter superfamily. A particular focus is given to CFTR's first nucleotide-binding domain (NBD1), because folding of NBD1 constitutes a bottleneck in the CFTR protein biogenesis pathway, and ATP binding to this domain plays a unique role in the functional stability of CFTR. Unraveling the molecular basis of CFTR folding, function, and pharmacology would inspire the development of next-generation mutation-specific CFTR modulators.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Signal Transduction , Mutation , Adenosine Triphosphate , Protein Folding
6.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499495

ABSTRACT

Mutations in CFTR cause misfolding and decreased or absent ion-channel function, resulting in the disease Cystic Fibrosis. Fortunately, a triple-modulator combination therapy (Trikafta) has been FDA-approved for 178 mutations, including all patients who have F508del on one allele. That so many CFTR mutants respond well to modulators developed for a single mutation is due to the nature of the folding process of this multidomain protein. We have addressed the question 'What characterizes the exceptions: the mutants that functionally respond either not or extremely well'. A functional response is the product of the number of CFTR molecules on the cell surface, open probability, and conductivity of the CFTR chloride channel. By combining biosynthetic radiolabeling with protease-susceptibility assays, we have followed CF-causing mutants during the early and late stages of folding in the presence and absence of modulators. Most CFTR mutants showed typical biochemical responses for each modulator, such as a TMD1 conformational change or an increase in (cell-surface) stability, regardless of a functional response. These modulators thus should still be considered for hypo-responder genotypes. Understanding both biochemical and functional phenotypes of outlier mutations will boost our insights into CFTR folding and misfolding, and lead to improved therapeutic strategies.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Benzodioxoles/therapeutic use , Phenotype , Mutation
7.
EMBO J ; 41(23): e112787, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36314692

ABSTRACT

In bacteria, N-terminal signal peptides mark proteins for transport across the plasma membrane. A recent study by Smets et al (2022) followed the folding of a pair of structural twins to shed light on how evolution has optimised the secretory process.


Subject(s)
Protein Sorting Signals , Proteins , Protein Transport , Cell Membrane , Protein Folding
8.
Cell Rep ; 36(9): 109646, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34469718

ABSTRACT

Removal of the membrane-tethering signal peptides that target secretory proteins to the endoplasmic reticulum is a prerequisite for proper folding. While generally thought to be removed co-translationally, we report two additional post-targeting functions for the HIV-1 gp120 signal peptide, which remains attached until gp120 folding triggers its removal. First, the signal peptide improves folding fidelity by enhancing conformational plasticity of gp120 by driving disulfide isomerization through a redox-active cysteine. Simultaneously, the signal peptide delays folding by tethering the N terminus to the membrane, until assembly with the C terminus. Second, its carefully timed cleavage represents intramolecular quality control and ensures release of (only) natively folded gp120. Postponed cleavage and the redox-active cysteine are both highly conserved and important for viral fitness. Considering the ∼15% proteins with signal peptides and the frequency of N-to-C contacts in protein structures, these regulatory roles of signal peptides are bound to be more common in secretory-protein biogenesis.


Subject(s)
HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp160/metabolism , HIV-1/metabolism , Protein Processing, Post-Translational , Cysteine , HEK293 Cells , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp160/genetics , HIV-1/genetics , HIV-1/growth & development , HeLa Cells , Humans , Protein Folding , Protein Interaction Domains and Motifs , Protein Sorting Signals , Protein Stability , Structure-Activity Relationship , Viral Load , Virus Replication
9.
J Mol Biol ; 433(13): 166955, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33771570

ABSTRACT

ABC transporters transport a wealth of molecules across membranes and consist of transmembrane and cytosolic domains. Their activity cycle involves a tightly regulated and concerted domain choreography. Regulation is driven by the cytosolic domains and function by the transmembrane domains. Folding of these polytopic multidomain proteins to their functional state is a challenge for cells, which is mitigated by co-translational and sequential events. We here reveal the first stages of co-translational domain folding and assembly of CFTR, the ABC transporter defective in the most abundant rare inherited disease cystic fibrosis. We have combined biosynthetic radiolabeling with protease-susceptibility assays and domain-specific antibodies. The most N-terminal domain, TMD1 (transmembrane domain 1), folds both its hydrophobic and soluble helices during translation: the transmembrane helices pack tightly and the cytosolic N- and C-termini assemble with the first cytosolic helical loop ICL1, leaving only ICL2 exposed. This N-C-ICL1 assembly is strengthened by two independent events: (i) assembly of ICL1 with the N-terminal subdomain of the next domain, cytosolic NBD1 (nucleotide-binding domain 1); and (ii) in the presence of corrector drug VX-809, which rescues cell-surface expression of a range of disease-causing CFTR mutants. Both lead to increased shielding of the CFTR N-terminus, and their additivity implies different modes of action. Early assembly of NBD1 and TMD1 is essential for CFTR folding and positions both domains for the required assembly with TMD2. Altogether, we have gained insights into this first, nucleating, VX-809-enhanced domain-assembly event during and immediately after CFTR translation, involving structures conserved in type-I ABC exporters.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cytosol/metabolism , Protein Biosynthesis , Protein Folding , Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/biosynthesis , Evolution, Molecular , Genes, Suppressor , HEK293 Cells , HeLa Cells , Humans , Models, Molecular , Peptide Hydrolases/metabolism , Protein Biosynthesis/drug effects , Protein Domains , Protein Folding/drug effects , Protein Structure, Secondary
10.
J Biol Chem ; 296: 100598, 2021.
Article in English | MEDLINE | ID: mdl-33781744

ABSTRACT

Patients with cystic fibrosis (CF) harboring the P67L variant in the cystic fibrosis transmembrane conductance regulator (CFTR) often exhibit a typical CF phenotype, including severe respiratory compromise. This rare mutation (reported in <300 patients worldwide) responds robustly to CFTR correctors, such as lumacaftor and tezacaftor, with rescue in model systems that far exceed what can be achieved for the archetypical CFTR mutant F508del. However, the specific molecular consequences of the P67L mutation are poorly characterized. In this study, we conducted biochemical measurements following low-temperature growth and/or intragenic suppression, which suggest a mechanism underlying P67L that (1) shares key pathogenic features with F508del, including off-pathway (non-native) folding intermediates, (2) is linked to folding stability of nucleotide-binding domains 1 and 2, and (3) demonstrates pharmacologic rescue that requires domains in the carboxyl half of the protein. We also investigated the "lasso" helices 1 and 2, which occur immediately upstream of P67. Based on limited proteolysis, pulse chase, and molecular dynamics analysis of full-length CFTR and a series of deletion constructs, we argue that P67L and other maturational processing (class 2) defects impair the integrity of the lasso motif and confer misfolding of downstream domains. Thus, amino-terminal missense variants elicit a conformational change throughout CFTR that abrogates maturation while providing a robust substrate for pharmacologic repair.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Mutation , Protein Folding , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Molecular Dynamics Simulation , Protein Conformation, alpha-Helical
11.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L288-L300, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33296276

ABSTRACT

Cystic fibrosis (CF) arises from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in progressive and life-limiting respiratory disease. R751L is a rare CFTR mutation that is poorly characterized. Our aims were to describe the clinical and molecular phenotypes associated with R751L. Relevant clinical data were collected from three heterozygote individuals harboring R751L (2 patients with G551D/R751L and 1 with F508del/R751L). Assessment of R751L-CFTR function was made in primary human bronchial epithelial cultures (HBEs) and Xenopus oocytes. Molecular properties of R751L-CFTR were investigated in the presence of known CFTR modulators. Although sweat chloride was elevated in all three patients, the clinical phenotype associated with R751L was mild. Chloride secretion in F508del/R751L HBEs was reduced compared with non-CF HBEs and associated with a reduction in sodium absorption by the epithelial sodium channel (ENaC). However, R751L-CFTR function in Xenopus oocytes, together with folding and cell surface transport of R751L-CFTR, was not different from wild-type CFTR. Overall, R751L-CFTR was associated with reduced sodium chloride absorption but had functional properties similar to wild-type CFTR. This is the first report of R751L-CFTR that combines clinical phenotype with characterization of functional and biological properties of the mutant channel. Our work will build upon existing knowledge of mutations within this region of CFTR and, importantly, inform approaches for clinical management. Elevated sweat chloride and reduced chloride secretion in HBEs may be due to alternative non-CFTR factors, which require further investigation.


Subject(s)
Bronchi , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Epithelial Cells , Mutation, Missense , Sodium Chloride/metabolism , Amino Acid Substitution , Animals , Bronchi/metabolism , Bronchi/pathology , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Male , Xenopus laevis
12.
Environ Microbiol ; 22(6): 1997-2000, 2020 06.
Article in English | MEDLINE | ID: mdl-32342578

ABSTRACT

The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.


Subject(s)
Betacoronavirus , Severe acute respiratory syndrome-related coronavirus , COVID-19 , Coronavirus Infections , Disease Outbreaks , Humans , Pandemics , Pneumonia, Viral , SARS-CoV-2
13.
J Clin Invest ; 129(12): 5236-5253, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31657788

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), with approximately 90% of patients harboring at least one copy of the disease-associated variant F508del. We utilized a yeast phenomic system to identify genetic modifiers of F508del-CFTR biogenesis, from which ribosomal protein L12 (RPL12/uL11) emerged as a molecular target. In the present study, we investigated mechanism(s) by which suppression of RPL12 rescues F508del protein synthesis and activity. Using ribosome profiling, we found that rates of translation initiation and elongation were markedly slowed by RPL12 silencing. However, proteolytic stability and patch-clamp assays revealed RPL12 depletion significantly increased F508del-CFTR steady-state expression, interdomain assembly, and baseline open-channel probability. We next evaluated whether Rpl12-corrected F508del-CFTR could be further enhanced with concomitant pharmacologic repair (e.g., using clinically approved modulators lumacaftor and tezacaftor) and demonstrated additivity of these treatments. Rpl12 knockdown also partially restored maturation of specific CFTR variants in addition to F508del, and WT Cftr biogenesis was enhanced in the pancreas, colon, and ileum of Rpl12 haplosufficient mice. Modulation of ribosome velocity therefore represents a robust method for understanding both CF pathogenesis and therapeutic response.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Mutation , Ribosomes/metabolism , Aminopyridines/pharmacology , Animals , Benzodioxoles/pharmacology , Bronchi/metabolism , Colon/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Epithelium/metabolism , Female , Gene Silencing , HEK293 Cells , Humans , Ileum/metabolism , Indoles/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutant Proteins/chemistry , Mutant Proteins/genetics , Pancreas/metabolism , Patch-Clamp Techniques , Protein Conformation , Protein Folding , Rats , Ribosomal Proteins/metabolism
14.
Protein Sci ; 28(7): 1276-1289, 2019 07.
Article in English | MEDLINE | ID: mdl-31050855

ABSTRACT

The Canopy (CNPY) family consists of four members predicted to be soluble proteins localized to the endoplasmic reticulum (ER). They are involved in a wide array of processes, including angiogenesis, cell adhesion, and host defense. CNPYs are thought to do so via regulation of secretory transport of a diverse group of proteins, such as immunoglobulin M, growth factor receptors, toll-like receptors, and the low-density lipoprotein receptor. Thus far, a comparative analysis of the mammalian CNPY family is missing. Bioinformatic analysis shows that mammalian CNPYs, except the CNPY1 homolog, have N-terminal signal sequences and C-terminal ER-retention signals and that mammals have an additional member CNPY5, also known as plasma cell-induced ER protein 1/marginal zone B cell-specific protein 1. Canopy proteins are particularly homologous in four hydrophobic alpha-helical regions and contain three conserved disulfide bonds. This sequence signature is characteristic for the saposin-like superfamily and strongly argues that CNPYs share this common saposin fold. We showed that CNPY2, 3, 4, and 5 (termed CNPYs) localize to the ER. In radioactive pulse-chase experiments, we found that CNPYs rapidly form disulfide bonds and fold within minutes into their native forms. Disulfide bonds in native CNPYs remain sensitive to low concentrations of dithiothreitol (DTT) suggesting that the cysteine residues forming them are relatively accessible to solutes. Possible roles of CNPYs in the folding of secretory proteins in the ER are discussed.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Computational Biology , Disulfides/chemistry , Disulfides/metabolism , Endoplasmic Reticulum/metabolism , HeLa Cells , Humans , Protein Folding
15.
J Vis Exp ; (144)2019 02 12.
Article in English | MEDLINE | ID: mdl-30829321

ABSTRACT

Radioactive pulse-chase labeling is a powerful tool for studying the conformational maturation, the transport to their functional cellular location, and the degradation of target proteins in live cells. By using short (pulse) radiolabeling times (<30 min) and tightly controlled chase times, it is possible to label only a small fraction of the total protein pool and follow its folding. When combined with nonreducing/reducing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoprecipitation with (conformation-specific) antibodies, folding processes can be examined in great detail. This system has been used to analyze the folding of proteins with a huge variation in properties such as soluble proteins, single and multi-pass transmembrane proteins, heavily N- and O-glycosylated proteins, and proteins with and without extensive disulfide bonding. Pulse-chase methods are the basis of kinetic studies into a range of additional features, including co- and posttranslational modifications, oligomerization, and polymerization, essentially allowing the analysis of a protein from birth to death. Pulse-chase studies on protein folding are complementary with other biochemical and biophysical methods for studying proteins in vitro by providing increased temporal resolution and physiological information. The methods as described within this paper are adapted easily to study the folding of almost any protein that can be expressed in mammalian or insect-cell systems.


Subject(s)
Protein Folding , Radioactive Pollutants/adverse effects , Cell Movement , Transfection
16.
Life Sci Alliance ; 2(1)2019 02.
Article in English | MEDLINE | ID: mdl-30659068

ABSTRACT

Cystic fibrosis is caused by mutations in the CFTR gene, which are subdivided into six classes. Mutants of classes III and IV reach the cell surface but have limited function. Most class-III and class-IV mutants respond well to the recently approved potentiator VX-770, which opens the channel. We here revisited function and folding of some class-IV mutants and discovered that R347P is the only one that leads to major defects in folding. By this criterion and by its functional response to corrector drug VX-809, R347P qualifies also as a class-II mutation. Other class-IV mutants folded like wild-type CFTR and responded similarly to VX-809, demonstrating how function and folding are connected. Studies on both types of defects complement each other in understanding how compounds improve mutant CFTR function. This provides an attractive unbiased approach for characterizing mode of action of novel therapeutic compounds and helps address which drugs are efficacious for each cystic fibrosis disease variant.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Protein Folding/drug effects , Alleles , Aminophenols/pharmacology , Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Biopsy , Cystic Fibrosis Transmembrane Conductance Regulator/classification , Genotype , HEK293 Cells , Humans , Mutation , Organoids/drug effects , Protein Structure, Tertiary/drug effects , Quinolones/pharmacology , Rectum/pathology , Transfection
17.
J Cyst Fibros ; 17(2S): S1-S4, 2018 03.
Article in English | MEDLINE | ID: mdl-29229473

ABSTRACT

In recent years, tremendous progress has been made in the development of novel drugs targeting the basic defect in patients with cystic fibrosis (CF). This breakthrough is based on a solid foundation of knowledge on CFTR's function in health and how mutations in CFTR cause CF multi-organ disease. This knowledge has been collected and continuously expanded by an active and persistent CF research community and has paved the way for precision medicine for CF. Since 2004, the European Cystic Fibrosis Society (ECFS) has held an annual Basic Science Conference that has evolved as an international forum for interdisciplinary discussion of hot topics and unsolved questions related to CF research. This Special Issue reviews CF research topics featured at the 14th ECFS Basic Science Conference and provides an up-to-date overview of recent progress in our understanding of CFTR structure and function, disease mechanisms implicated in airway mucus plugging, inflammation and abnormal host-pathogen interactions, and advancements with enhanced cell and animal model systems and breakthrough therapies directed at mutant CFTR or alternative targets. In addition, this Special Issue also identifies a number of fundamental questions and hurdles that still have to be overcome to realize the full potential of precision medicine and develop transformative therapies for all patients with CF.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis , Therapies, Investigational/methods , Congresses as Topic , Cystic Fibrosis/genetics , Cystic Fibrosis/therapy , Humans , Mutation , Precision Medicine/methods
18.
Curr Protoc Protein Sci ; 90: 14.1.1-14.1.21, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29091273

ABSTRACT

In this unit, protocols are provided for detection of disulfide bond formation in cultures of intact cells and in an in vitro translation system containing isolated microsomes or semi-permeabilized cells. First, the newly synthesized protein of interest is biosynthetically labeled with radioactive amino acids in a short pulse. The labeled protein then is chased with unlabeled amino acids. At different times during the chase, a sample is collected, membranes are lysed with detergent, and the protein is isolated by immunoprecipitation, as described. A support protocol is provided for analysis of disulfide bonds in the immunoprecipitates by SDS-PAGE with and without prior reduction. The difference in mobility observed between the gels with nonreduced and reduced samples is due to disulfide bonds in the nonreduced protein. An additional support protocol is included that uses PEG-maleimide to modify free thiols and follow disulfide-bond formation by SDS-PAGE. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Cysteine/metabolism , Disulfides/analysis , Methionine/metabolism , Protein Biosynthesis , Animals , Disulfides/metabolism , Electrophoresis, Polyacrylamide Gel , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Ethylmaleimide/chemistry , HEK293 Cells , Humans , Immunoprecipitation , Oxidation-Reduction , Protein Folding , Staining and Labeling , Sulfur Radioisotopes
19.
Curr Opin Pharmacol ; 34: 83-90, 2017 06.
Article in English | MEDLINE | ID: mdl-29055231

ABSTRACT

Pharmacological intervention to treat the lethal genetic disease cystic fibrosis has become reality, even for the severe, most common folding mutant F508del CFTR. CFTR defects range from absence of the protein, misfolding that leads to degradation rather than cell-surface localization (such as F508del), to functional chloride-channel defects on the cell surface. Corrector and potentiator drugs improve cell-surface location and channel activity, respectively, and combination therapy of two correctors and a potentiator have shown synergy. Several combinations are in the drug-development pipeline and although the primary defect is not repaired, rescue levels are reaching those resembling a cure for CF. Combination therapy with correctors may also improve functional CFTR mutants and benefit patients on potentiator therapy.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Humans , Protein Folding
20.
Elife ; 62017 07 28.
Article in English | MEDLINE | ID: mdl-28753126

ABSTRACT

Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160 is targeted to the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble subunit gp120 to a near-native conformation. We here detail the mechanism by which co-translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and residues downstream of the canonical cleavage site form an extended alpha-helix in the ER membrane, which covers the cleavage site, thus preventing cleavage. A point mutation in the signal peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage results in decreased viral fitness compared to wild-type HIV.


Subject(s)
HIV Envelope Protein gp160/chemistry , HIV Envelope Protein gp160/metabolism , HIV-1/physiology , Protein Folding , Protein Sorting Signals , Cell Line , Humans , Protein Conformation , Protein Transport , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...