Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 131(1): 376-387, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34043470

ABSTRACT

Altering dietary carbohydrate (CHO) intake modulates fuel utilization during exercise. However, there has been no systematic evaluation of metabolic responses to graded changes in short-term (< 1 wk) dietary CHO intake. Thirteen active men performed interval running exercise combined with isocaloric diets over 3 days before evaluation of metabolic responses to 60-min running at 65% V̇O2max on three occasions. Diets contained lower [LOW, 2.40 ± 0.66 g CHO·kg-1·day-1, 21.3 ± 0.5% of energy intake (EI)], moderate (MOD, 4.98 ± 1.31 g CHO·kg-1·day-1, 46.3 ± 0.7% EI), or higher (HIGH, 6.48 ± 1.56 g CHO·kg-1·day-1, 60.5 ± 1.6% EI) CHO. Preexercise muscle glycogen content was lower in LOW [54.3 ± 26.4 mmol·kg-1 wet weight (ww)] compared with MOD (82.6 ± 18.8 mmol·kg -1 ww) and HIGH (80.4 ± 26.0 mmol·kg-1 ww, P < 0.001; MOD vs. HIGH, P = 0.85). Whole body substrate oxidation, systemic responses, and muscle substrate utilization during exercise indicated increased fat and decreased CHO metabolism in LOW [respiratory exchange ratio (RER): 0.81 ± 0.01] compared with MOD (RER 0.86 ± 0.01, P = 0.0005) and HIGH (RER: 0.88 ± 0.01, P < 0.0001; MOD vs. HIGH, P = 0.14). Higher basal muscle expression of genes encoding proteins implicated in fat utilization was observed in LOW. In conclusion, muscle glycogen availability and subsequent metabolic responses to exercise were resistant to increases in dietary CHO intake from ∼5.0 to ∼6.5 g CHO·kg-1·day-1 (46% to 61% EI), while muscle glycogen, gene expression, and metabolic responses were sensitive to more marked reductions in CHO intake (∼2.4 g CHO·kg-1·day-1, ∼21% EI).NEW & NOTEWORTHY The data presented here suggest that metabolic responses to steady-state aerobic exercise are somewhat resistant to short-term changes in dietary carbohydrate (CHO) intake within the 5-6.5 g CHO·kg-1·day-1 [46-61% energy intake (EI)] range. In contrast, reduction in short-term dietary CHO intake to ∼2.4 g CHO·kg-1·day-1 (21% EI) evoked clear changes indicative of increased fat and decreased CHO metabolism during exercise.


Subject(s)
Physical Endurance , Running , Carbohydrate Metabolism , Dietary Carbohydrates/metabolism , Exercise , Glycogen/metabolism , Humans , Male , Muscle, Skeletal/metabolism , Oxygen Consumption
2.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Article in English | MEDLINE | ID: mdl-31628477

ABSTRACT

CONTEXT: Pre-exercise nutrient availability alters acute metabolic responses to exercise, which could modulate training responsiveness. OBJECTIVE: To assess acute and chronic effects of exercise performed before versus after nutrient ingestion on whole-body and intramuscular lipid utilization and postprandial glucose metabolism. DESIGN: (1) Acute, randomized, crossover design (Acute Study); (2) 6-week, randomized, controlled design (Training Study). SETTING: General community. PARTICIPANTS: Men with overweight/obesity (mean ± standard deviation, body mass index: 30.2 ± 3.5 kg⋅m-2 for Acute Study, 30.9 ± 4.5 kg⋅m-2 for Training Study). INTERVENTIONS: Moderate-intensity cycling performed before versus after mixed-macronutrient breakfast (Acute Study) or carbohydrate (Training Study) ingestion. RESULTS: Acute Study-exercise before versus after breakfast consumption increased net intramuscular lipid utilization in type I (net change: -3.44 ± 2.63% versus 1.44 ± 4.18% area lipid staining, P < 0.01) and type II fibers (-1.89 ± 2.48% versus 1.83 ± 1.92% area lipid staining, P < 0.05). Training Study-postprandial glycemia was not differentially affected by 6 weeks of exercise training performed before versus after carbohydrate intake (P > 0.05). However, postprandial insulinemia was reduced with exercise training performed before but not after carbohydrate ingestion (P = 0.03). This resulted in increased oral glucose insulin sensitivity (25 ± 38 vs -21 ± 32 mL⋅min-1⋅m-2; P = 0.01), associated with increased lipid utilization during exercise (r = 0.50, P = 0.02). Regular exercise before nutrient provision also augmented remodeling of skeletal muscle phospholipids and protein content of the glucose transport protein GLUT4 (P < 0.05). CONCLUSIONS: Experiments investigating exercise training and metabolic health should consider nutrient-exercise timing, and exercise performed before versus after nutrient intake (ie, in the fasted state) may exert beneficial effects on lipid utilization and reduce postprandial insulinemia.


Subject(s)
Exercise Therapy/methods , Insulin Resistance , Lipid Metabolism , Metabolic Syndrome/prevention & control , Obesity/therapy , Overweight/therapy , Adult , Case-Control Studies , Energy Intake , Energy Metabolism , Follow-Up Studies , Humans , Lipids/analysis , Male , Metabolic Syndrome/epidemiology , Nutrients , Obesity/physiopathology , Overweight/physiopathology , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL