Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 140(42): 13892-13903, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30265001

ABSTRACT

Silver metal exposed to the atmosphere corrodes and becomes tarnished as a result of oxidation and precipitation of the metal as an insoluble salt. Tarnish has so poor a reputation that the word itself connotes corruption and disrespectability; however, tarnishing is a facile synthetic approach for preparing thin metal-sulfide films on silver or copper metal that might be exploited to prepare more elaborate materials with desirable optoelectronic properties. In this work, we prepare luminescent semiconducting thin films of mithrene, a metal-organic chalcogenolate assembly, by replacing the tarnish-causing atmospheric sulfur source with diphenyl diselenide. Mithrene, or silver benzeneselenolate [AgSePh]∞, is a crystalline solid that contains both an organic supramolecular phase and a two-dimensional inorganic coordination polymer phase. This compound gradually accumulates as the sole product of silver metal corrosion. The chemical reaction is carried out on metallic silver thin films and yields crystalline films with thicknesses ranging from 5 to 100 nm. We use the large-area films (>6 cm2) afforded by this method to measure the optical properties of this compound. The mild-temperature, wafer-scale processing of hybrid chalcogenolate thin films may prove useful in the application of hybrid organic-inorganic materials in semiconductor devices and hierarchical architectures.

2.
Angew Chem Int Ed Engl ; 57(40): 13172-13176, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30136423

ABSTRACT

We demonstrate the guiding principles behind simple two dimensional self-assembly of MOF nanoparticles (NPs) and oleic acid capped iron oxide (Fe3 O4 ) NCs into a uniform two-dimensional bi-layered superstructure. This self-assembly process can be controlled by the energy of ligand-ligand interactions between surface ligands on Fe3 O4 NCs and Zr6 O4 (OH)4 (fumarate)6 MOF NPs. Scanning transmission electron microscopy (TEM)/energy-dispersive X-ray spectroscopy and TEM tomography confirm the hierarchical co-assembly of Fe3 O4 NCs with MOF NPs as ligand energies are manipulated to promote facile diffusion of the smaller NCs. First-principles calculations and event-driven molecular dynamics simulations indicate that the observed patterns are dictated by combination of ligand-surface and ligand-ligand interactions. This study opens a new avenue for design and self-assembly of MOFs and NCs into high surface area assemblies, mimicking the structure of supported catalyst architectures, and provides a thorough fundamental understanding of the self-assembly process, which could be a guide for designing functional materials with desired structure.

3.
Science ; 357(6352): 673-676, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28818940

ABSTRACT

We synthesized a two-dimensional (2D) crystalline covalent organic framework (sp2c-COF) that was designed to be fully π-conjugated and constructed from all sp2 carbons by C=C condensation reactions of tetrakis(4-formylphenyl)pyrene and 1,4-phenylenediacetonitrile. The C=C linkages topologically connect pyrene knots at regular intervals into a 2D lattice with π conjugations extended along both x and y directions and develop an eclipsed layer framework rather than the more conventionally obtained disordered structures. The sp2c-COF is a semiconductor with a discrete band gap of 1.9 electron volts and can be chemically oxidized to enhance conductivity by 12 orders of magnitude. The generated radicals are confined on the pyrene knots, enabling the formation of a paramagnetic carbon structure with high spin density. The sp2 carbon framework induces ferromagnetic phase transition to develop spin-spin coherence and align spins unidirectionally across the material.

4.
J Am Chem Soc ; 139(24): 8355-8363, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28537070

ABSTRACT

Quinoidal structures incorporating expanded para-quinodimethane (p-QM) units have garnered great interest as functional organic electronic, optical, and magnetic materials. The direct use of the compact p-QM unit as an electronic building block, however, has been inhibited by the high reactivity conveyed by its biradical character. Herein, we introduce a stable p-QM variant, namely p-azaquinodimethane (p-AQM), that incorporates nitrogen atoms in the central ring and alkoxy substituents on the periphery to increase the stability of the quinoidal structure. The succinct synthesis from readily available precursors leads to regio- and stereospecific p-AQMs that can be readily integrated into the backbone of conjugated polymers. The quinoidal character of the p-AQM unit endows the resulting polymers with narrow band gaps and high carrier transport mobilities. The study of a series of copolymers employing different numbers of thiophene units revealed an unconventional trend in band gaps, which is distinct from the widely adopted donor-acceptor approach to tuning the band gaps of conjugated polymers. Theoretical calculations have shed light on the nature of this trend, which may provide a unique class of conjugated polymers with promising optical and electronic properties.

5.
Angew Chem Int Ed Engl ; 53(47): 12870-5, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25264304

ABSTRACT

Cost-effective, solution-processable organic photovoltaics (OPV) present an interesting alternative to inorganic silicon-based solar cells. However, one of the major remaining challenges of OPV devices is their lack of long-term operational stability, especially at elevated temperatures. The synthesis of a fullerene dumbbell and its use as an additive in the active layer of a PCDTBT:PCBM-based OPV device is reported. The addition of only 20 % of this novel fullerene not only leads to improved device efficiencies, but more importantly also to a dramatic increase in morphological stability under simulated operating conditions. Dynamic secondary ion mass spectrometry (DSIMS) and TEM are used, amongst other techniques, to elucidate the origins of the improved morphological stability.

6.
Nano Lett ; 14(6): 3096-101, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24820648

ABSTRACT

Many high-performance conjugated polymers for organic photovoltaics and transistors crystallize such that chains are parallel, resulting in significant anisotropy of the nanoscale charge transport properties. Here we demonstrate an unusual intercrystallite relationship where thin lamellae adopt a preferred epitaxial relationship with crossed-chains at the interface. The crossed-chains may allow either crystal to use the other as an "electronic shunt", creating efficient quasi-three-dimensional transport pathways that reduce the severity of grain boundaries and defects in limiting transport.

7.
Adv Mater ; 26(18): 2825-30, 2014 May.
Article in English | MEDLINE | ID: mdl-24448874

ABSTRACT

The thermoelectric properties of a highperformance electron-conducting polymer, (P(NDIOD-T2), extrinsically doped with dihydro-1H-benzoimidazol-2-yl (NDBI) derivatives, are reported. The highest thermoelectric power factor that has been reported for a solution-processed n-type polymer is achieved; and it is concluded that engineering polymerdopant miscibility is essential for the development of organic thermoelectrics.

8.
J Am Chem Soc ; 134(38): 16040-6, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-22970828

ABSTRACT

A novel strategy for the synthesis of fully conjugated donor-acceptor block copolymers, in a single reaction step employing Stille coupling polymerization of end-functional polythiophene and AA + BB monomers, is presented. The unique donor-acceptor structure of these block copolymers provides a rich self-assembly behavior, with the first example of a fully conjugated donor-acceptor block copolymer having two separate crystalline domains being obtained.

9.
Langmuir ; 25(13): 7443-9, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19408901

ABSTRACT

Lateral and normal forces between a surface-bound, brushlike copolymer, poly(ethylenimine)-graft-poly(ethylene glycol) (PEI-g-PEG), and a silica colloidal probe were investigated with atomic force microscopy (AFM) and related to the relative mass of the solvent absorbed within the polymer as measured with the quartz crystal microbalance. PEI-g-PEG was adsorbed onto an oxide-passivated silicon wafer through its exposure to physiologically buffered solutions of the polymer. Frictional forces were measured between the colloidal probe and the substrate by AFM as the polarity of the solvent was systematically varied. Reduced friction forces and greater film thicknesses were encountered under solvents of higher polarity, which are attributed to the extended conformation of the brushlike copolymer under these conditions. Lateral and normal forces detected between the colloidal probe and this surface-bound PEI-g-PEG were found to be similar under certain solvent conditions to those measured for poly(L-lysine)-graft-poly(ethylene glycol), a brushlike copolymer with a different molecular architecture. To this end, friction force studies of both symmetric and asymmetric PEI-g-PEG-coated interfaces served to identify the contributions of conformational and bridging effects in the observed tribological behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...