Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 6(1): 69-86, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16551227

ABSTRACT

We have discovered > 10(8) microbial cells/cm3 attached to clay grains in the bottom 13 m of the GISP2 (Greenland Ice Sheet Project) ice core. Their concentration correlates with huge excesses of CO2 and CH4. We show that Fe-reducing bacteria produce most of the excess CO2 and methanogenic archaea produce the excess CH4. The number of attached cells per clay grain is proportional to grain perimeter rather than to area, which implies that nutrients are accessed at grain edges. We conclude that Fe-reducing microbes immobilized on clay surfaces metabolize via "shuttle" molecules that transport electrons to grain edges, where they reduce Fe(III) ions at edges to Fe(II) while organic acid ions are oxidized to CO2. Driven by the concentration gradient, electrons on Fe(II) ions at grain edges "hop" to Fe(III) ions inward in the same edges and oxidize them. The original Fe(III) ions can then attach new electrons from shuttle molecules at the edges. Our mechanism explains how Fe-reducers can reduce essentially all Fe(III) in clay minerals. We estimate that the Fe(III) in clay grains in the GISP2 silty ice can sustain Fe-reducing bacteria at the ambient temperature of -9 degrees C for approximately 10(6) years. F420 autofluorescence imaging shows that > 2.4% of the cells are methanogens, which account for the excess methane.


Subject(s)
Ice , Water Microbiology , Aluminum Silicates , Archaea/isolation & purification , Archaea/metabolism , Bacteria/isolation & purification , Bacteria/metabolism , Clay , Ecosystem , Electron Transport , Exobiology , Greenland , Iron/metabolism , Methane/metabolism , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Oxidation-Reduction , Solar System
2.
Proc Natl Acad Sci U S A ; 102(51): 18292-6, 2005 Dec 20.
Article in English | MEDLINE | ID: mdl-16339015

ABSTRACT

Methane trapped in the 3,053-m-deep Greenland Ice Sheet Project 2 ice core provides an important record of millennial-scale climate change over the last 110,000 yr. However, at several depths in the lowest 90 m of the ice core, the methane concentration is up to an order of magnitude higher than at other depths. At those depths we have discovered methanogenic archaea, the in situ metabolism of which accounts for the excess methane. The total concentration of all types of microbes we measured with direct counts of Syto-23-stained cells tracks the excess of methanogens that we identified by their F420 autofluorescence and provides independent evidence for anomalous layers. The metabolic rate we estimated for microbes at those depths is consistent with the Arrhenius relation for rates found earlier for microbes imprisoned in rock, sediment, and ice. It is roughly the same as the rate of spontaneous macromolecular damage inferred from laboratory data, suggesting that microbes imprisoned in ice expend metabolic energy mainly to repair damage to DNA and amino acids rather than to grow. Equating the loss rate of methane recently discovered in the Martian atmosphere to the production rate by possible methanogens, we estimate that a possible Martian habitat would be at a temperature of approximately 0 degrees C and that the concentration, if uniformly distributed in a 10-m-thick layer, would be approximately 1 cell per ml.


Subject(s)
Exobiology , Ice Cover/chemistry , Ice Cover/microbiology , Mars , Methane/analysis , Methane/metabolism , Extraterrestrial Environment/chemistry , Greenland , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL