Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Environ Res ; : 119545, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986798

ABSTRACT

Mercury concentrations ([Hg]) in fish reflect a complex array of interacting biogeochemical and ecological variables. In northern regions where fish are a critical subsistence food, understanding and predicting changes of fish [Hg] can be particularly difficult due to paucity of comprehensive data associated with logistical challenges of field sampling. Building on previous work where we elucidated causal relationships between fish [Hg] and a variety of catchment, water quality, and ecological variables in subarctic lakes, we investigated whether using only ratios of catchment area to lake area (CA:LA) can predict [Hg] in northern freshwater fish species. As CA:LA can be sensed remotely, they may be more feasible and practical to obtain than field data in far northern regions. Our study included thirteen remote lakes that represent a CA:LA gradient of 6.2-423.5 within an ∼66,000 km2 subarctic region of Northwest Territories, Canada. We found that size-standardized [Hg] in three widespread fish species, including Lake Whitefish (Coregonus clupeaformis), Walleye (Sander vitreus), and Northern Pike (Esox lucius), were significantly and positively related to CA:LA (p < 0.007, r2 = 67-80%), indicating higher fish [Hg] in smaller lakes surrounded by relatively larger catchments. Our findings provide compelling evidence that remotely sensed CA:LA can be used to predict [Hg] in northern fishes and aid in prioritizing understudied and subsistence fishing lakes of the Canadian subarctic for development of comprehensive [Hg] monitoring programs.

2.
J Exp Biol ; 227(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856174

ABSTRACT

Organisms regularly adjust their physiology and energy balance in response to predictable seasonal environmental changes. Stressors and contaminants have the potential to disrupt these critical seasonal transitions. No studies have investigated how simultaneous exposure to the ubiquitous toxin methylmercury (MeHg) and food stress affects birds' physiological performance across seasons. We quantified several aspects of energetic performance in song sparrows, Melospiza melodia, exposed or not to unpredictable food stress and MeHg in a 2×2 experimental design, over 3 months during the breeding season, followed by 3 months post-exposure. Birds exposed to food stress had reduced basal metabolic rate and non-significant higher factorial metabolic scope during the exposure period, and had a greater increase in lean mass throughout most of the experimental period. Birds exposed to MeHg had increased molt duration, and increased mass:length ratio of some of their primary feathers. Birds exposed to the combined food stress and MeHg treatment often had responses similar to the stress-only or MeHg-only exposure groups, suggesting these treatments affected physiological performance through different mechanisms and resulted in compensatory or independent effects. Because the MeHg and stress variables were selected in candidate models with a ΔAICc lower than 2 but the 95% confidence interval of these variables overlapped zero, we found weak support for MeHg effects on all measures except basal metabolic rate, and for food stress effects on maximum metabolic rate, factorial metabolic scope and feather mass:length ratio. This suggests that MeHg and food stress effects on these measures are statistically identified but not simple and/or were too weak to be detected via linear regression. Overall, combined exposure to ecologically relevant MeHg and unpredictable food stress during the breeding season does not appear to induce extra energetic costs for songbirds in the post-exposure period. However, MeHg effects on molt duration could carry over across multiple annual cycle stages.


Subject(s)
Energy Metabolism , Feathers , Methylmercury Compounds , Molting , Stress, Physiological , Animals , Feathers/drug effects , Methylmercury Compounds/toxicity , Molting/drug effects , Stress, Physiological/drug effects , Energy Metabolism/drug effects , Sparrows/physiology , Basal Metabolism/drug effects , Male , Seasons , Female
3.
Ecotoxicol Environ Saf ; 280: 116573, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38870737

ABSTRACT

Boreal peatlands are "hotspots" of net methylmercury (MeHg) production and may become drier in the future due to climate change. This study investigates a critical gap by analyzing the nuanced relationship between soil moisture content and the release of MeHg, inorganic mercury (IHg), sulfate (SO42-), and dissolved organic matter (DOM) in a laboratory incubation of boreal peat soils. Dried peat soils exhibited heightened releases of IHg, MeHg, and SO42- during re-wetting events. Both dried and saturated peat soils released more DOM than moist peat soils during re-wetting events, and DOM released from dried soils had higher bioaccessibility than that from the saturated soils (p<0.05). There was an equilibrium of IHg concentrations between peat soils and pore waters, but long-term severe drought may disrupt this equilibrium and then release more IHg to pore waters during re-wetting events. Contrary to expectations, positive relationships between IHg concentrations and SUVA254 did not exist in all treatments. MeHg and SO42- were depleted quickly because there was no external input of Hg and SO42- to this static system. More bioaccessible DOM than aromatic DOM was released from peat soils with different soil moisture contents after 32 weeks during the re-wetting event (p<0.05). These results imply that re-wetting of peat soils after droughts can increase the release of MeHg from peat soils and may also increase net MeHg production due to the release of SO42- and bioaccessible DOM from peat soils, reshaping our understanding of soil moisture's role in mercury dynamics. This novel insight into soil moisture and MeHg dynamics carries significant implications for mitigating mercury contamination in aquatic ecosystems.


Subject(s)
Environmental Monitoring , Mercury , Methylmercury Compounds , Soil Pollutants , Soil , Methylmercury Compounds/analysis , Soil/chemistry , Mercury/analysis , Soil Pollutants/analysis , Water/chemistry , Climate Change , Water Pollutants, Chemical/analysis
4.
Environ Res ; 217: 114835, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36400218

ABSTRACT

Biomagnification of mercury (Hg) through lake food webs is understudied in rapidly changing northern regions, where wild-caught subsistence fish are critical to food security. We investigated estimates and among-lake variability of Hg biomagnification rates (BMR), relationships between Hg BMR and Hg levels in subsistence fish, and environmental drivers of Hg BMR in ten remote subarctic lakes in Northwest Territories, Canada. Lake-specific linear regressions between Hg concentrations (total Hg ([THg]) in fish and methyl Hg ([MeHg]) in primary consumers) and baseline-adjusted δ15N ratios were significant (p < 0.001, r2 = 0.58-0.88), indicating biomagnification of Hg through food webs of all studied lakes. Quantified using the slope of Hg-δ15N regressions, Hg BMR ranged from 0.16 to 0.25, with mean ± standard deviation of 0.20 ± 0.03). Using fish [MeHg] rather than [THg] lowered estimates of Hg BMR by ∼10%, suggesting that the use of [THg] as a proxy for [MeHg] in fish can influence estimates of Hg BMR. Among-lake variability of size-standardized [THg] in resident fish species from different trophic guilds, namely Lake Whitefish (Coregonus clupeaformis) and Northern Pike (Esox lucius), was not significantly explained by among-lake variability in Hg BMR. Stepwise multiple regressions indicated that among-lake variability of Hg BMR was best explained by a positive relationship with catchment forest cover (p = 0.009, r2 = 0.59), likely reflecting effects of forest cover on water chemistry of downstream lakes and ultimately, concentrations of biomagnifying MeHg (and percent MeHg of total Hg) in resident biota. These findings improve our understanding of Hg biomagnification in remote subarctic lakes.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Mercury/analysis , Food Chain , Bioaccumulation , Canada , Environmental Monitoring , Fishes , Water Pollutants, Chemical/analysis
5.
Environ Sci Technol ; 56(24): 17615-17625, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36445185

ABSTRACT

Changes in sulfate (SO42-) deposition have been linked to changes in mercury (Hg) methylation in peatlands and water quality in freshwater catchments. There is little empirical evidence, however, of how quickly methyl-Hg (MeHg, a bioaccumulative neurotoxin) export from catchments might change with declining SO42- deposition. Here, we present responses in total Hg (THg), MeHg, total organic carbon, pH, and SO42- export from a peatland-dominated catchment as a function of changing SO42- deposition in a long-term (1998-2011), whole-ecosystem, control-impact experiment. Annual SO42- deposition to half of a 2-ha peatland was experimentally increased 6-fold over natural levels and then returned to ambient levels in two phases. Sulfate additions led to a 5-fold increase in monthly flow-weighted MeHg concentrations and yields relative to a reference catchment. Once SO42- additions ceased, MeHg concentrations in the outflow streamwater returned to pre-SO42- addition levels within 2 years. The decline in streamwater MeHg was proportional to the change in the peatland area no longer receiving experimental SO42- inputs. Importantly, net demethylation and increased sorption to peat hastened the return of MeHg to baseline levels beyond purely hydrological flushing. Overall, we present clear empirical evidence of rapid and proportionate declines in MeHg export from a peatland-dominated catchment when SO42- deposition declines.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Ecosystem , Sulfates , Environmental Monitoring , Water Pollutants, Chemical/analysis , Mercury/analysis , Sulfur Oxides
6.
Horm Behav ; 146: 105261, 2022 11.
Article in English | MEDLINE | ID: mdl-36126358

ABSTRACT

Avian migration is a challenging life stage susceptible to the adverse effects of stressors, including contaminants like methylmercury (MeHg). Although birds often experience stressors and contaminants concurrently in the wild, no study to date has investigated how simultaneous exposure to MeHg and food stress affects migratory behavior. Our objectives were to determine if MeHg or food stress exposure during summer, alone or combined, has carry-over effects on autumn migratory activity, and if hormone levels (corticosterone, thyroxine) and body condition were related to these effects. We tested how exposure to dietary MeHg and/or food stress (unpredictable temporary food removal) affected migratory behavior in captive song sparrows, Melospiza melodia. Nocturnal activity was influenced by a 3-way interaction between MeHg × stress × nights of the study, indicating that activity changed over time in different ways depending on prior treatments. Thyroxine was not affected by treatment or sampling date. During the migratory season, fecal corticosterone metabolite concentrations increased in birds co-exposed to MeHg and food stress compared to controls, suggesting an additive carry-over effect. As well, during the period of behavioral recording, body condition increased with time in unstressed birds, but not in stressed birds. Fecal corticosterone metabolite concentrations were positively correlated to duration of nocturnal activity, but thyroxine levels and body condition were not. The differences in nocturnal activity between groups suggest that food stress and MeHg exposure on breeding grounds could have direct and indirect carry-over effects that have the potential to affect the fall migration journey.


Subject(s)
Methylmercury Compounds , Sparrows , Animals , Corticosterone , Seasons
7.
Sci Total Environ ; 822: 153430, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35090925

ABSTRACT

Mercury concentrations ([Hg]) in fish reflect complex biogeochemical and ecological interactions that occur at a range of spatial and biological scales. Elucidating these interactions is crucial to understanding and predicting fish [Hg], particularly at northern latitudes, where environmental perturbations are having profound effects on land-water-animal interactions, and where fish are a critical subsistence food source. Using data from eleven subarctic lakes that span an area of ~60,000 km2 in the Dehcho Region of Northwest Territories (Canada), we investigated how trophic ecology and growth rates of fish, lake water chemistry, and catchment characteristics interact to affect [Hg] in Northern Pike (Esox lucius), a predatory fish of widespread subsistence and commercial importance. Results from linear regression and piecewise structural equation models showed that 83% of among-lake variability in Northern Pike [Hg] was explained by fish growth rates (negative) and concentrations of methyl Hg ([MeHg]) in benthic invertebrates (positive). These variables were in turn influenced by concentrations of dissolved organic carbon, MeHg (water), and total Hg (sediment) in lakes, which were ultimately driven by catchment characteristics. Lakes in relatively larger catchments and with more temperate/subpolar needleleaf and mixed forests had higher [Hg] in Northern Pike. Our results provide a plausible mechanistic understanding of how interacting processes at scales ranging from whole catchments to individual organisms influence fish [Hg], and give insight into factors that could be considered for prioritizing lakes for monitoring in subarctic regions.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Esocidae , Fishes , Lakes/chemistry , Mercury/analysis , Water Pollutants, Chemical/analysis
8.
Nature ; 601(7891): 74-78, 2022 01.
Article in English | MEDLINE | ID: mdl-34912113

ABSTRACT

Anthropogenic releases of mercury (Hg)1-3 are a human health issue4 because the potent toxicant methylmercury (MeHg), formed primarily by microbial methylation of inorganic Hg in aquatic ecosystems, bioaccumulates to high concentrations in fish consumed by humans5,6. Predicting the efficacy of Hg pollution controls on fish MeHg concentrations is complex because many factors influence the production and bioaccumulation of MeHg7-9. Here we conducted a 15-year whole-ecosystem, single-factor experiment to determine the magnitude and timing of reductions in fish MeHg concentrations following reductions in Hg additions to a boreal lake and its watershed. During the seven-year addition phase, we applied enriched Hg isotopes to increase local Hg wet deposition rates fivefold. The Hg isotopes became increasingly incorporated into the food web as MeHg, predominantly from additions to the lake because most of those in the watershed remained there. Thereafter, isotopic additions were stopped, resulting in an approximately 100% reduction in Hg loading to the lake. The concentration of labelled MeHg quickly decreased by up to 91% in lower trophic level organisms, initiating rapid decreases of 38-76% of MeHg concentration in large-bodied fish populations in eight years. Although Hg loading from watersheds may not decline in step with lowering deposition rates, this experiment clearly demonstrates that any reduction in Hg loadings to lakes, whether from direct deposition or runoff, will have immediate benefits to fish consumers.


Subject(s)
Environmental Monitoring , Environmental Restoration and Remediation , Fishes/metabolism , Food Chain , Lakes/chemistry , Mercury Poisoning/veterinary , Mercury/analysis , Animals , Isotopes/analysis , Time Factors
9.
Sci Total Environ ; 775: 145739, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-33621875

ABSTRACT

Methylmercury (MeHg) is a globally distributed pollutant that can negatively affect wildlife. Bird feathers are often used as a monitoring tool of contaminant exposure, but variability in total mercury (THg) content in flight feathers has raised concerns over their utility. The objective of this study was to quantify blood and feather THg depuration through the progression of primary feather molt in order to clarify the relationship between blood and feather mercury concentration, and test the reliability of feather THg measurements as a monitoring tool in wild songbirds. Song sparrows (Melospiza melodia) were experimentally exposed to dietary MeHg and their blood and primary feather THg concentrations were measured during exposure and post-exposure periods of three months each. A rapid decrease in feather and blood THg concentration through molt progression was observed. Primary feather THg content was higher in feathers grown during the MeHg exposure period compared to those grown during the post-exposure period. Primary feather THg concentration was highly correlated with blood THg measured at the time of feather growth (R = 0.98), indicating that, although THg concentration is variable among flight feathers, this reflects temporally sequential molting patterns and declining blood concentration during depuration. Primary flight feathers thus provide an accurate and useful tool for estimating the mercury burden of birds at the time a chosen feather was grown, and have the potential to be an effective and reliable biomonitoring tool for species with well-characterized molt patterns.


Subject(s)
Mercury , Songbirds , Animals , Environmental Monitoring , Feathers/chemistry , Mercury/analysis , Reproducibility of Results
10.
Sci Total Environ ; 762: 143109, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33162143

ABSTRACT

Migratory songbirds breeding in the Canadian Boreal forest are exposed to mercury (Hg), a potent neurotoxin that impairs avian health, however, the degree of exposure depends on many factors. As breeding grounds are geographically remote and vast, the measurement of Hg in individual birds is impractical particularly at large spatial scales. Here, we present a Canada-wide dataset of nearly 2000 migratory songbirds that were used to assess summer Hg exposure of 15 songbird species sampled during fall migration. We measured Hg concentrations in tail feathers and related those to dietary guild, geographic capture location, age, sex and probable breeding ground locations using feather δ2H. Overall mean (±SE) feather Hg concentration was 1.49 ± 0.03 µg/g (N = 1946): however, a clear geographic gradient in feather Hg concentrations emerged being highest in East and lowest in West. Dietary guild was the next strongest predictor of feather Hg with insectivorous songbirds in Eastern Canada at particular risk due to Hg exposure on summer breeding grounds. This broad-scale assessment of Hg exposure in migratory songbirds in Canada can be used to guide future studies on finer-scale determinants of Hg exposure in birds.


Subject(s)
Environmental Pollutants , Mercury , Songbirds , Animals , Canada , Environmental Monitoring , Environmental Pollutants/analysis , Feathers/chemistry , Isotopes , Mercury/analysis
11.
Sci Total Environ ; 745: 140906, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32758756

ABSTRACT

The widely accepted conceptual model of mercury (Hg) cycling in freshwater lakes (atmospheric deposition and runoff of inorganic Hg, methylation in bottom sediments and subsequent bioaccumulation and biomagnification in biota) is practically accepted as common knowledge. There is mounting evidence that the dominant processes that regulate inputs, transformations, and bioavailability of Hg in many lakes may be missing from this picture, and the fixation on the temperate stratified lake archetype is impeding our exploration of understudied, but potentially important sources of methylmercury to freshwater lakes. In this review, the importance of understudied biogeochemical processes and sites of methylmercury production are highlighted, including the complexity of redox transformations of Hg within the lake system itself, the complex assemblage of microbes found in biofilms and periphyton (two vastly understudied important sources of methylmercury in many freshwater ecosystems), and the critical role of autochthonous and allochthonous dissolved organic matter which mediates the net supply of methylmercury from the cellular to catchment scale. A conceptual model of lake Hg in contrasting lakes and catchments is presented, highlighting the importance of the autochthonous and allochthonous supply of dissolved organic matter, bioavailable inorganic mercury and methylmercury and providing a framework for future convergent research at the lab and field scales to establish more mechanistic process-based relationships within and among critical compartments that regulate methylmercury concentrations in freshwater ecosystems.

12.
Environ Pollut ; 259: 113878, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32032983

ABSTRACT

Eating fish provides numerous health benefits, but it is also a dominant pathway for human exposure to contaminants. Many studies have examined mercury (Hg) accumulation in fish, but fewer have considered other elements, such as arsenic (As) and chromium (Cr). Recently, freshwater fish from several pristine boreal systems across northern Ontario, Canada, have been reported with elevated concentrations of As and Cr for reasons that are not well understood. Our goal was to investigate the ecological and environmental influences over concentrations of As, Cr, and other elements in these fish to better understand what affects metal uptake and the risk to consumers. We measured 10 elements (including As, Cr, Hg) as well as carbon (δ13C), nitrogen (δ15N), and sulfur (δ34S) stable isotopes in 388 fish from 25 lake and river sites across this remote region. These data were used to determine the effect of: 1) trophic ecology; and 2) watershed geology on piscine elemental content. Overall, most element concentrations were low, often below provincial advisory benchmarks (ABs). However, traces of Hg, As, Cr, and selenium (Se) were detected in most fish. Based on their exceedance of their respective ABs, the most restrictive elements on fish consumption in these boreal systems were Hg > As > Cr. Arsenic and Se, but not Cr concentrations were related to fish size and trophic ecology (inferred from δ13C and δ15N), suggesting bioaccumulation of the former elements. Fish with enriched δ34S values, suggestive of anadromous behaviour, had marginally lower Hg but higher Se concentrations. Modeling results suggested a strong effect of site-specific factors, though we found weak trends between piscine elemental content and geological features (e.g., mafic intrusions), potentially due to the broad spatial scale of this study. Results from this study address gaps in our understanding of As and Cr bioaccumulation and will help to inform fish consumption guidelines.


Subject(s)
Arsenic , Chromium , Fishes , Food Contamination , Water Pollutants, Chemical , Animals , Environmental Monitoring , Food Chain , Food Contamination/analysis , Humans , Lakes , Mercury , Ontario , Rivers , Water Pollutants, Chemical/analysis
13.
J Environ Sci (China) ; 80: 137-145, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30952331

ABSTRACT

The use of biopsy plugs to sample fish muscle tissue for mercury analyses is a viable alternative to lethal sampling; however, the practice has yet to be widely implemented in routine monitoring due to concerns about variability of mercury concentrations in fish muscle tissues. Here we examine distribution of mercury in fillets of four fish species (Walleye, Northern Pike, Smallmouth Bass and Lake Trout), suitability of left/right side of fillet for biopsy sampling, and appropriateness of re-using a biopsy punch. The results showed that average mercury concentrations in left and right fillets of fish are similar. Mercury concentrations in biopsy plug samples, taken from the anterior dorsal area of the fish fillet, were statistically equivalent to the mercury concentrations in homogenized fillets. There was no discernible cross contamination between samples when a biopsy punch was reused after washing in hot soapy water, and as such, biopsy punches can be recycled during sampling to reduce the sampling cost. If a tissue mass collected from a specific site on the fillet is insufficient, then we suggest sampling corresponding locations on the other fillet rather than sampling two adjacent sites on one fillet to obtain more tissue. The results presented here can improve the accuracy of fillet biopsy plug sampling, minimize fish mortality for mercury monitoring, and reduce labor and material costs in monitoring programs.


Subject(s)
Environmental Monitoring/methods , Fishes , Mercury/analysis , Water Pollutants, Chemical/analysis , Animals , Biopsy , Muscles
14.
Environ Toxicol Chem ; 37(10): 2682-2691, 2018 10.
Article in English | MEDLINE | ID: mdl-30024049

ABSTRACT

It is commonly assumed that most (>95%) of the mercury (Hg) found in fish muscle is the toxic form, methylmercury (MeHg), due to its efficient assimilation and retention in biotic tissue. However, this assumption is largely based on studies examining the percentage of MeHg (%MeHg [the fraction of total Hg as MeHg]) in muscle from mostly large-bodied predatory fish; less is known about the %MeHg in smaller bodied individuals or those of different trophic guilds. The present study analyzed MeHg and total Hg concentrations in the muscle of 2 large-bodied piscivores (walleye and northern pike), one large-bodied benthivore (white sucker), and 2 small-bodied forage fish (sculpins and shiners) across a broad size range. We found substantially lower %MeHg than the commonly assumed 95% in several fish (e.g., 17 individuals had <70% MeHg). Muscle %MeHg significantly increased with size and age in all species except walleye, which had significantly higher %MeHg than pike or suckers, particularly in smaller and younger fish (e.g., 18-21% higher at 10 g; 5-11% higher at 500 g). Results of predictive modeling suggest that muscle %MeHg is higher in pelagic-feeding fish and those with lower lipid content, although model results varied significantly among species. According to our findings, total Hg measurement in muscle is not an appropriate proxy for MeHg in smaller fish from all species, an important consideration for future piscine Hg studies and monitoring. Environ Toxicol Chem 2018;37:2682-2691. © 2018 SETAC.


Subject(s)
Aging/metabolism , Body Size , Environmental Monitoring , Fishes/anatomy & histology , Fishes/metabolism , Fresh Water , Methylmercury Compounds/analysis , Muscles/metabolism , Animals , Diet , Least-Squares Analysis , Species Specificity , Water Pollutants, Chemical/analysis
15.
Environ Sci Technol ; 52(6): 3344-3353, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29444573

ABSTRACT

Dissolved organic matter (DOM) includes an array of carbon-based compounds that vary in size and structure and have complex interactions with mercury (Hg) cycling in aquatic systems. While many studies have examined the relationship between dissolved organic carbon concentrations ([DOC]) and methyl Hg bioaccumulation, few studies have considered the effects of DOM composition (e.g., protein-content, aromaticity). The goal of this study was to explore the relationships between total and methyl [Hg] in water, invertebrates, and fish and optically derived measures of DOM composition from 47 lake and river sites across a boreal watershed. Results showed higher aqueous total [Hg] in systems with more aromatic DOM and higher [DOC], potentially due to enhanced transport from upstream or riparian areas. Methyl [Hg] in biota were all positively related to the amount of microbial-based DOM and, in some cases, to the proportions of labile and protein-like DOM. These results suggest that increased Hg bioaccumulation is related to the availability of labile DOM, potentially due to enhanced Hg methylation. DOM composition explained 68% and 54% more variability in [Hg] in surface waters and large-bodied fish, respectively, than [DOC] alone. These results show that optical measures of DOM characteristics are a valuable tool for understanding DOM-Hg biogeochemistry.


Subject(s)
Mercury , Biota , Lakes , Organic Chemicals , Rivers
16.
Environ Pollut ; 234: 894-901, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29253830

ABSTRACT

Although there has been much speculation in the literature that methylmercury (MeHg) exposure can reduce songbird fitness, little is known about its effects on migration. Migrating songbirds typically make multiple flights, stopping to refuel for short periods between flights. How refueling at MeHg-contaminated stopover sites would contribute to MeHg bioaccumulation, and how such exposure could affect subsequent flight performance during migration has not been determined. In a dosing experiment we show that migratory yellow-rumped warblers (Setophaga coronata) rapidly accumulate dietary MeHg in blood, brain and muscle, liver and kidneys in just 1-2 weeks. We found that exposure to a 0.5 ppm diet did not affect vertical takeoff performance, but in 2-h wind tunnel flights, MeHg-treated warblers had a greater median number of strikes (landing or losing control) in the first 30 min, longer strike duration, and shorter flight duration. The number of strikes in the first 30 min of 0.5 ppm MeHg-exposed warblers was related to mercury concentration in blood in a sigmoid, dose-dependent fashion. Hyperphagic migratory songbirds may potentially bioaccumulate MeHg rapidly, which can lead to decreased migratory endurance flight performance.


Subject(s)
Methylmercury Compounds/metabolism , Songbirds/physiology , Animal Feed/analysis , Animal Feed/toxicity , Animal Migration/drug effects , Animals , Dietary Exposure , Female , Liver/drug effects , Liver/metabolism , Male , Methylmercury Compounds/toxicity
17.
Sci Total Environ ; 524-525: 260-8, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25909268

ABSTRACT

Mercury pollution has not been well documented in the inland lakes or fishes of Mexico, despite the importance of freshwater fish as a source of protein in local diets. Total mercury and methylmercury in waters, sediments, and the commercial fish catch were investigated in Lake Zapotlán, Mexico. Concentrations of total and methylmercury were very high in runoff and wastewater inputs, but very low in sediments and surface waters of the open water area of the lake. Concentrations of total mercury in tilapia and carp were very low, consistent with the low concentrations in lake water and sediments. Particle settling, sorption, the biogeochemical environment, and/or bloom dilution are all plausible explanations for the significant reductions in both total mercury and methylmercury. Despite very high loading of mercury, this shallow tropical lake was not a mercury-impaired ecosystem, and these findings may translate across other shallow, alkaline tropical lakes. Importantly, the ecosystem services that seemed to be provided by peripheral wetlands in reducing mercury inputs highlight the potential for wetland conservation or restoration in Mexico.


Subject(s)
Environmental Monitoring , Lakes , Mercury/analysis , Water Pollutants, Chemical/analysis , Wetlands , Animals , Fishes/metabolism , Geologic Sediments/chemistry , Mercury/metabolism , Mexico , Water Pollutants, Chemical/metabolism
18.
Proc Biol Sci ; 282(1805)2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25788594

ABSTRACT

Mercury (Hg) is increasing in marine food webs, especially at high latitudes. The bioaccumulation and biomagnification of methyl mercury (MeHg) has serious effects on wildlife, and is most evident in apex predators. The MeHg body burden in birds is the balance of ingestion and excretion, and MeHg in feathers is an effective indicator of overall MeHg burden. Ivory gulls (Pagophila eburnea), which consume ice-associated prey and scavenge marine mammal carcasses, have the highest egg Hg concentrations of any Arctic bird, and the species has declined by more than 80% since the 1980s in Canada. We used feathers from museum specimens from the Canadian Arctic and western Greenland to assess whether exposure to MeHg by ivory gulls increased from 1877 to 2007. Based on constant feather stable-isotope (δ(13)C, δ(15)N) values, there was no significant change in ivory gulls' diet over this period, but feather MeHg concentrations increased 45× (from 0.09 to 4.11 µg g(-1) in adults). This dramatic change in the absence of a dietary shift is clear evidence of the impact of anthropogenic Hg on this high-latitude threatened species. Bioavailable Hg is expected to increase in the Arctic, raising concern for continued population declines in high-latitude species that are far from sources of environmental contaminants.


Subject(s)
Charadriiformes/metabolism , Environmental Exposure , Feathers/chemistry , Methylmercury Compounds/metabolism , Water Pollutants, Chemical/metabolism , Animals , Arctic Regions , Canada , Carbon Isotopes/analysis , Diet , Endangered Species , Environmental Monitoring , Female , Greenland , Male , Nitrogen Isotopes/analysis , Seasons , Time Factors
19.
Glob Chang Biol ; 21(1): 388-95, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24957384

ABSTRACT

The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.


Subject(s)
Biodiversity , Climate Change , Ecosystem , Models, Biological , Sphagnopsida/physiology , Analysis of Variance , Carbon Dioxide/metabolism , Groundwater , Hydrogen-Ion Concentration , Species Specificity , Temperature
20.
Environ Sci Technol ; 48(2): 1023-31, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24383823

ABSTRACT

The fate of mercury (Hg) deposited on forested upland soils depends on a wide array of biogeochemical and hydrological processes occurring in the soil landscape. In this study, Hg in soil, soilwater, and streamwater were measured across a forested upland subcatchment of the METAALICUS watershed in northwestern Ontario, Canada, where a stable Hg isotope (spike Hg) was applied to distinguish newly deposited Hg from Hg already resident in the watershed (ambient Hg). In total, we were able to account for 45% of the total mass of spike Hg applied to the subcatchment during the entire loading phase of the experiment, with approximately 22% of the total mass applied now residing in the top 15 cm of the mineral soil layer. Decreasing spike Hg/ambient Hg ratios with depth in the soil and soilwater suggest that spike Hg is less mobile than ambient Hg over shorter time scales. However, the transport of spike Hg into the mineral soil layer is enhanced in depressional areas where water table fluctuation is more extreme. While we expect that this pool of Hg is now effectively sequestered in the mineral horizon, future disturbance of the soil profile could remobilize this stored Hg in runoff.


Subject(s)
Ecosystem , Mercury/analysis , Soil Pollutants/analysis , Soil/chemistry , Water Supply , Carbon/analysis , Mercury Isotopes/analysis , Ontario , Rivers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...