Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Transl Med ; 13(591)2021 04 28.
Article in English | MEDLINE | ID: mdl-33910978

ABSTRACT

Insulin resistance is a key event in type 2 diabetes onset and a major comorbidity of obesity. It results from a combination of fat excess-triggered defects, including lipotoxicity and metaflammation, but the causal mechanisms remain difficult to identify. Here, we report that hyperactivation of the tyrosine phosphatase SHP2 found in Noonan syndrome (NS) led to an unsuspected insulin resistance profile uncoupled from altered lipid management (for example, obesity or ectopic lipid deposits) in both patients and mice. Functional exploration of an NS mouse model revealed this insulin resistance phenotype correlated with constitutive inflammation of tissues involved in the regulation of glucose metabolism. Bone marrow transplantation and macrophage depletion improved glucose homeostasis and decreased metaflammation in the mice, highlighting a key role of macrophages. In-depth analysis of bone marrow-derived macrophages in vitro and liver macrophages showed that hyperactive SHP2 promoted a proinflammatory phenotype, modified resident macrophage homeostasis, and triggered monocyte infiltration. Consistent with a role of SHP2 in promoting inflammation-driven insulin resistance, pharmaceutical SHP2 inhibition in obese diabetic mice improved insulin sensitivity even better than conventional antidiabetic molecules by specifically reducing metaflammation and alleviating macrophage activation. Together, these results reveal that SHP2 hyperactivation leads to inflammation-triggered metabolic impairments and highlight the therapeutical potential of SHP2 inhibition to ameliorate insulin resistance.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Adipose Tissue , Animals , Humans , Inflammation , Macrophages , Mice , Mice, Knockout
2.
Endocr Rev ; 39(5): 676-700, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29924299

ABSTRACT

Noonan syndrome [NS; Mendelian Inheritance in Men (MIM) #163950] and related syndromes [Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome; MIM #151100), Noonan-like syndrome with loose anagen hair (MIM #607721), Costello syndrome (MIM #218040), cardio-facio-cutaneous syndrome (MIM #115150), type I neurofibromatosis (MIM #162200), and Legius syndrome (MIM #611431)] are a group of related genetic disorders associated with distinctive facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was clinically described more than 50 years ago, and disease genes have been identified throughout the last 3 decades, providing a molecular basis to better understand their physiopathology and identify targets for therapeutic strategies. Most of these genes encode proteins belonging to or regulating the so-called RAS/MAPK signaling pathway, so these syndromes have been gathered under the name RASopathies. In this review, we provide a clinical overview of RASopathies and an update on their genetics. We then focus on the functional and pathophysiological effects of RASopathy-causing mutations and discuss therapeutic perspectives and future directions.


Subject(s)
Craniofacial Abnormalities/genetics , Germ-Line Mutation , Mitogen-Activated Protein Kinases/genetics , Signal Transduction/physiology , ras Proteins/genetics , Humans , Male
3.
Sci Signal ; 10(472)2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28351953

ABSTRACT

Sphingosine kinase 1 (SphK1) promotes cell proliferation and survival, and its abundance is often increased in tumors. SphK1 produces the signaling lipid sphingosine 1-phosphate (S1P), which activates signaling cascades downstream five G protein-coupled receptors (S1P1-5) to modulate vascular and immune system function and promote proliferation. We identified a new function of the SphK1-S1P pathway specifically in the control of mitosis. SphK1 depletion in HeLa cells caused prometaphase arrest, whereas its overexpression or activation accelerated mitosis. Increasing the abundance of S1P promoted mitotic progression, overrode the spindle assembly checkpoint (SAC), and led to chromosome segregation defects. S1P was secreted through the transporter SPNS2 and stimulated mitosis by binding to and activating S1P5 on the extracellular side, which then activated the intracellular phosphatidylinositol 3-kinase (PI3K)-AKT pathway. Knockdown of S1P5 prevented the S1P-induced spindle defect phenotype. RNA interference assays revealed that the mitotic kinase Polo-like kinase 1 (PLK1) was an important effector of S1P-S1P5 signaling-induced mitosis in HeLa cells. Our findings identify an extracellular signal and the downstream pathway that promotes mitotic progression and may indicate potential therapeutic targets to inhibit the proliferation of cancer cells.


Subject(s)
Chromosome Segregation/drug effects , Lysophospholipids/pharmacology , Mitosis/drug effects , Receptors, Lysosphingolipid/metabolism , Signal Transduction/drug effects , Sphingosine/analogs & derivatives , Animals , Blotting, Western , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cells, Cultured , HeLa Cells , Humans , Mice, Knockout , Microscopy, Confocal , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA Interference , Receptors, Lysosphingolipid/genetics , Sphingosine/pharmacology , Time-Lapse Imaging/methods , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL