Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Occup Environ Med ; 66(9): 607-14, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19286684

ABSTRACT

OBJECTIVES: The aim was to develop a new up-to-date and comprehensive job exposure matrix (JEM) for estimating exposure to potential endocrine disruptors in epidemiological research. METHODS: Chemicals with endocrine disrupting properties were identified from the literature and classified into 10 chemical groups: polycyclic aromatic hydrocarbons (PAHs), polychlorinated organic compounds, pesticides, phthalates, organic solvents, bisphenol A, alkylphenolic compounds, brominated flame retardants, metals and a miscellaneous group. Most chemical groups were divided into three to six subgroups. Focusing on the years 1996-2006, three experts scored the probability of exposure to each chemical group and subgroup for 353 job titles as "unlikely" (0), "possible" (1) or "probable" (2). Job titles with positive exposure probability scores were provided with exposure scenarios that described the reasoning behind the scores. RESULTS: Exposure to any chemical group was unlikely for 238 job titles (67%), whereas 102 (29%) job titles were classified as possibly (17%) or probably (12%) exposed to one or several endocrine disruptors. The remaining 13 job titles provided too little information to classify exposure. PAHs, pesticides, phthalates, organic solvents, alkylphenolic compounds and metals were often linked to a job title in the JEM. The remaining chemical groups were found to involve very few occupations. CONCLUSIONS: Despite some important limitations, this JEM could be a valuable tool for exposure assessment in studies on the health risks of endocrine disruptors, especially when task specific information is incorporated. The documented exposure scenarios are meant to facilitate further adjustments to the JEM to allow more widespread use.


Subject(s)
Endocrine Disruptors/analysis , Occupational Exposure/analysis , Endocrine Disruptors/classification , Endocrine Disruptors/toxicity , Environmental Monitoring/methods , Expert Testimony , Humans , Occupational Exposure/adverse effects , Occupations/statistics & numerical data , Risk Assessment/methods
2.
Indoor Air ; 18(5): 416-24, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18673396

ABSTRACT

UNLABELLED: Poor air quality in schools has been associated with adverse health effects. Indoor air quality can be improved by increasing ventilation. The objective of this study was to compare the effectiveness of different interventions to improve ventilation behavior in primary schools. We used indoor CO(2) concentrations as an indicator. In 81 classes of 20 Dutch primary schools, we applied three different interventions: (i) a class-specific ventilation advice; (ii) the advice combined with a CO(2) warning device and (iii) the advice combined with a teaching package. The effectiveness of the interventions was tested directly after intervention and 6 weeks after intervention by measuring the CO(2) concentrations and comparison with a control group (iv). Before intervention, the CO(2) concentration exceeded 1000 ppm for 64% of the school day. The class-specific ventilation advice without further support appeared an ineffective tool to improve ventilation behavior. The advice in combination with a CO(2) warning device or the teaching package proved effective tools and resulted in lower indoor CO(2) concentrations when compared with the control group. Ventilation was significantly improved, but CO(2) concentrations still exceeded 1000 ppm for more than 40% of the school day. Hence, until ventilation facilities are upgraded, the CO(2) warning device and the teaching package are useful low-cost tools. PRACTICAL IMPLICATIONS: To improve ventilation behavior and indoor air quality in schools, CO(2) warning device and teaching package combined with a class-specific ventilation advice, are effective tools, while giving the ventilation advice solely, is not effective. Although ventilation is significantly improved through behavioral change, the ventilation rate is still insufficient to maintain good air quality during the full school day. Therefore, the improvement of the ventilation facilities is recommended. Hence, until ventilation facilities in schools are upgraded, the CO(2) warning device and the teaching package are useful low-cost tools to improve current indoor air quality.


Subject(s)
Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , Environmental Monitoring , Facility Design and Construction , Schools , Ventilation/methods , Adolescent , Air Pollutants/analysis , Carbon Dioxide/analysis , Child , Humans , Mass Spectrometry , Quality Control , Risk Assessment , Ventilation/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL