Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0301367, 2024.
Article in English | MEDLINE | ID: mdl-38625908

ABSTRACT

BACKGROUND: Understanding the immune response kinetics to SARS-CoV-2 infection and COVID-19 vaccination is important in nursing home (NH) residents, a high-risk population. METHODS: An observational longitudinal evaluation of 37 consenting vaccinated NH residents with/without SARS-CoV-2 infection from October 2020 to July 2022 was conducted to characterize the immune response to spike protein due to infection and/or mRNA COVID-19 vaccine. Antibodies (IgG) to SARS-CoV-2 full-length spike, nucleocapsid, and receptor binding domain protein antigens were measured, and surrogate virus neutralization capacity was assessed using Meso Scale Discovery immunoassays. The participant's spike exposure status varied depending on the acquisition of infection or receipt of a vaccine dose. Longitudinal linear mixed effects modeling was used to describe trajectories based on the participant's last infection or vaccination; the primary series mRNA COVID-19 vaccine was considered two spike exposures. Mean antibody titer values from participants who developed an infection post receipt of mRNA COVID-19 vaccine were compared with those who did not. In a subset of participants (n = 15), memory B cell (MBC) S-specific IgG (%S IgG) responses were assessed using an ELISPOT assay. RESULTS: The median age of the 37 participants at enrollment was 70.5 years; 30 (81%) had prior SARS-CoV-2 infection, and 76% received Pfizer-BioNTech and 24% Moderna homologous vaccines. After an observed augmented effect with each spike exposure, a decline in the immune response, including %S IgG MBCs, was observed over time; the percent decline decreased with increasing spike exposures. Participants who developed an infection at least two weeks post-receipt of a vaccine were observed to have lower humoral antibody levels than those who did not develop an infection post-receipt. CONCLUSIONS: These findings suggest that understanding the durability of immune responses in this vulnerable NH population can help inform public health policy regarding the timing of booster vaccinations as new variants display immune escape.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/prevention & control , COVID-19 Vaccines , Georgia , SARS-CoV-2 , Vaccination , Immunity , Nursing Homes , RNA, Messenger , Immunoglobulin G , Antibodies, Viral
2.
Microbiol Spectr ; 12(2): e0282823, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38174931

ABSTRACT

Acinetobacter baumannii is a Gram-negative bacillus that can cause severe and difficult-to-treat healthcare-associated infections. A. baumannii can harbor mobile genetic elements carrying genes that produce carbapenemase enzymes, further limiting therapeutic options for infections. In the United States, the Antimicrobial Resistance Laboratory Network (AR Lab Network) conducts sentinel surveillance of carbapenem-resistant Acinetobacter baumannii (CRAB). Participating clinical laboratories sent CRAB isolates to the AR Lab Network for characterization, including antimicrobial susceptibility testing and molecular detection of class A (Klebsiella pneumoniae carbapenemase), class B (Active-on-Imipenem, New Delhi metallo-ß-lactamase, and Verona integron-encoded metallo-ß-lactamase), and class D (Oxacillinase, blaOXA-23-like, blaOXA-24/40-like, blaOXA-48-like, and blaOXA-58-like) carbapenemase genes. During 2017‒2020, 6,026 CRAB isolates from 45 states were tested for targeted carbapenemase genes; 1% (64 of 5,481) of CRAB tested for targeted class A and class B genes were positive, but 83% (3,351 of 4,041) of CRAB tested for targeted class D genes were positive. The number of CRAB isolates carrying a class A or B gene increased from 2 of 312 (<1%) tested in 2017 to 26 of 1,708 (2%) tested in 2020. Eighty-three percent (2,355 of 2,846) of CRAB with at least one of the targeted carbapenemase genes and 54% (271 of 500) of CRAB without were categorized as extensively drug resistant; 95% (42 of 44) of isolates carrying more than one targeted gene had difficult-to-treat susceptibility profiles. CRAB isolates carrying targeted carbapenemase genes present an emerging public health threat in the United States, and their rapid detection is crucial to improving patient safety.IMPORTANCEThe Centers for Disease Control and Prevention has classified CRAB as an urgent public health threat. In this paper, we used a collection of >6,000 contemporary clinical isolates to evaluate the phenotypic and genotypic properties of CRAB detected in the United States. We describe the frequency of specific carbapenemase genes detected, antimicrobial susceptibility profiles, and the distribution of CRAB isolates categorized as multidrug resistant, extensively drug-resistant, or difficult to treat. We further discuss the proportion of isolates showing susceptibility to Food and Drug Administration-approved agents. Of note, 84% of CRAB tested harbored at least one class A, B, or D carbapenemase genes targeted for detection and 83% of these carbapenemase gene-positive CRAB were categorized as extensively drug resistant. Fifty-four percent of CRAB isolates without any of these carbapenemase genes detected were still extensively drug-resistant, indicating that infections caused by CRAB are highly resistant and pose a significant risk to patient safety regardless of the presence of one of these carbapenemase genes.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Humans , Anti-Bacterial Agents/pharmacology , Acinetobacter baumannii/genetics , Carbapenems , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , beta-Lactamases/genetics , Bacterial Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL