Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
2.
J Struct Biol ; 214(3): 107876, 2022 09.
Article in English | MEDLINE | ID: mdl-35738335

ABSTRACT

Botulinum Neurotoxins (BoNT) are the most potent toxins currently known. However, they also have therapeutic applications for an increasing number of motor related conditions due to their specificity, and low diffusion into the system. Although the start- and end- points for the BoNT mechanism of action are well-studied, a critical step remains poorly understood. It is theorised that BoNTs undergo a pH-triggered conformational shift, activating the neurotoxin by priming it to form a transmembrane (TM) channel. To test this hypothesis, we combined molecular dynamics (MD) simulations and small-angle x-ray scattering (SAXS), revealing a new conformation of serotype E (BoNT/E). This conformation was exclusively observed in simulations below pH 5.5, as determined by principal component analysis (PCA), and its theoretical SAXS profile matched an experimental SAXS profile obtained at pH 4. Additionally, a localised secondary structural change was observed in MD simulations below pH 5.5, in a region previously identified as instrumental for membrane insertion for serotype A (BoNT/A). These changes were found at a critical pH value for BoNTs in vivo, and may be relevant for their therapeutic use.


Subject(s)
Botulinum Toxins, Type A , Botulinum Toxins , Botulinum Toxins, Type A/chemistry , Hydrogen-Ion Concentration , Scattering, Small Angle , X-Ray Diffraction
3.
J Hered ; 111(1): 21-32, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31723957

ABSTRACT

The Hawai'ian honeycreepers (drepanids) are a classic example of adaptive radiation: they adapted to a variety of novel dietary niches, evolving a wide range of bill morphologies. Here we investigated genomic diversity, demographic history, and genes involved in bill morphology phenotypes in 2 honeycreepers: the 'akiapola'au (Hemignathus wilsoni) and the Hawai'i 'amakihi (Chlorodrepanis virens). The 'akiapola'au is an endangered island endemic, filling the "woodpecker" niche by using a unique bill morphology, while the Hawai'i 'amakihi is a dietary generalist common on the islands of Hawai'i and Maui. We de novo sequenced the 'akiapola'au genome and compared it to the previously sequenced 'amakihi genome. The 'akiapola'au is far less heterozygous and has a smaller effective population size than the 'amakihi, which matches expectations due to its smaller census population and restricted ecological niche. Our investigation revealed genomic islands of divergence, which may be involved in the honeycreeper radiation. Within these islands of divergence, we identified candidate genes (including DLK1, FOXB1, KIF6, MAML3, PHF20, RBP1, and TIMM17A) that may play a role in honeycreeper adaptations. The gene DLK1, previously shown to influence Darwin's finch bill size, may be related to honeycreeper bill morphology evolution, while the functions of the other candidates remain unknown.


Subject(s)
Adaptation, Biological , Genetic Speciation , Passeriformes/genetics , Animals , Ecosystem , Evolution, Molecular , Female , Genetic Variation , Genome , Male , Molecular Sequence Annotation , Passeriformes/anatomy & histology
4.
Blood ; 133(22): 2401-2412, 2019 05 30.
Article in English | MEDLINE | ID: mdl-30975638

ABSTRACT

Refractory or relapsed diffuse large B-cell lymphoma (DLBCL) often associates with the activated B-cell-like (ABC) subtype and genetic alterations that drive constitutive NF-κB activation and impair B-cell terminal differentiation. Here, we show that DNA damage response by p53 is a central mechanism suppressing the pathogenic cooperation of IKK2ca-enforced canonical NF-κB and impaired differentiation resulting from Blimp1 loss in ABC-DLBCL lymphomagenesis. We provide evidences that the interplay between these genetic alterations and the tumor microenvironment select for additional molecular addictions that promote lymphoma progression, including aberrant coexpression of FOXP1 and the B-cell mutagenic enzyme activation-induced deaminase, and immune evasion through major histocompatibility complex class II downregulation, PD-L1 upregulation, and T-cell exhaustion. Consistently, PD-1 blockade cooperated with anti-CD20-mediated B-cell cytotoxicity, promoting extended T-cell reactivation and antitumor specificity that improved long-term overall survival in mice. Our data support a pathogenic cooperation among NF-κB-driven prosurvival, genetic instability, and immune evasion mechanisms in DLBCL and provide preclinical proof of concept for including PD-1/PD-L1 blockade in combinatorial immunotherapy for ABC-DLBCL.


Subject(s)
B-Lymphocytes/immunology , B7-H1 Antigen/immunology , Gene Expression Regulation, Neoplastic , Lymphocyte Activation , Lymphoma, Large B-Cell, Diffuse/immunology , Programmed Cell Death 1 Receptor/immunology , Tumor Escape , Tumor Suppressor Protein p53/immunology , Animals , B-Lymphocytes/pathology , B7-H1 Antigen/genetics , Female , Humans , Immunotherapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/therapy , Male , Mice , Mice, Transgenic , Programmed Cell Death 1 Receptor/genetics , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Tumor Suppressor Protein p53/genetics
5.
J Biol Chem ; 294(10): 3735-3743, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30602565

ABSTRACT

Human serum albumin is an endogenous ligand transport protein whose long circulatory half-life is facilitated by engagement with the human cellular recycling neonatal Fc receptor (hFcRn). The single free thiol located at Cys-34 in domain I of albumin has been exploited for monoconjugation of drugs. In this work, we increased the drug-to-albumin ratio potential by engineering recombinant human albumin (rHSA) variants with varying hFcRn affinity to contain three free, conjugation-competent cysteines. Structural analysis was used to identify positions for cysteine introduction to maximize rHSA stability and formation of the conjugated product without affecting hFcRn binding. The thiol rHSA variants exhibited up to 95% monomeric stability over 24 months and retained hFcRn engagement compared with a WT unconjugated control demonstrated by Biolayer Interferometry. The additional cysteines were further introduced into a panel of rHSA variants engineered with different affinities for hFcRn. After conjugation with three Alexa Fluor 680 (AF680) fluorophores, hFcRn binding was similar to that of the original triple-thiol nonconjugated rHSA variants (0.88 and 0.25 µm for WT albumin with or without 3xAF680 respectively, and 0.04 and 0.02 µm for a high hFcRn-binding variant with or without 3xAF680, respectively). We also observed a 1.3-fold increase in the blood circulatory half-life of a high hFcRn-binding triple-thiol variant conjugated with AF680 (t½ = 22.4 h) compared with its WT counterpart (t½ = 17.3 h) in mice. Potential high drug-to-albumin ratios combined with high hFcRn engagement are attractive features of this new class of albumins that offer a paradigm shift for albumin-based drug delivery.


Subject(s)
Blood Circulation/drug effects , Histocompatibility Antigens Class I/metabolism , Protein Binding , Receptors, Fc/metabolism , Recombinant Proteins/metabolism , Serum Albumin, Human/metabolism , Sulfhydryl Compounds , Animals , Humans , Mice , Models, Molecular , Protein Conformation , Protein Engineering , Recombinant Proteins/genetics , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology , Serum Albumin, Human/genetics , Serum Albumin, Human/pharmacokinetics , Serum Albumin, Human/pharmacology
6.
Am J Respir Crit Care Med ; 197(12): 1552-1564, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29509491

ABSTRACT

RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response. OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children. METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR. MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P < 3.53 × 10-7) and suggestive (P < 7.06 × 10-6) loci near genes previously associated with lung capacity (DNAH5), immunity (NFKB1 and PLCB1), and ß-adrenergic signaling (ADAMTS3 and COX18). Functional analyses of the BDR-associated SNP in NFKB1 revealed potential regulatory function in bronchial smooth muscle cells. The SNP is also an expression quantitative trait locus for a neighboring gene, SLC39A8. The lack of other asthma study populations with BDR and whole-genome sequencing data on minority children makes it impossible to perform replication of our rare variant associations. Minority underrepresentation also poses significant challenges to identify age-matched and population-matched cohorts of sufficient sample size for replication of our common variant findings. CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations.


Subject(s)
Albuterol/therapeutic use , Asthma/drug therapy , Bronchodilator Agents/therapeutic use , Genome-Wide Association Study , Mexican Americans/genetics , Pharmacogenomic Variants/genetics , Race Factors , Adolescent , Black or African American/genetics , Child , Female , Hispanic or Latino/genetics , Humans , Male , Polymorphism, Single Nucleotide , United States
7.
Microbiology (Reading) ; 163(12): 1802-1811, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29072558

ABSTRACT

The study of archaeal proteins and the processes to which they contribute poses particular challenges due to the often extreme environments in which they function. DNA recombination, replication and repair proteins of the halophilic euryarchaeon, Haloferax volcanii (Hvo) are of particular interest as they tend to resemble eukaryotic counterparts in both structure and activity, and genetic tools are available to facilitate their analysis. In the present study, we show using bioinformatics approaches that the Hvo RecA-like protein RadA is structurally similar to other recombinases although is distinguished by a unique acidic insertion loop. To facilitate expression of Hvo RadA a co-expression approach was used, providing its lone paralog, RadB, as a binding partner. At present, structural and biochemical characterization of Hvo RadA is lacking. Here, we describe for the first time co-expression of Hvo RadA with RadB and purification of these proteins as a complex under in vitro conditions. Purification procedures were performed under high salt concentration (>1 M sodium chloride) to maintain the solubility of the proteins. Quantitative densitometry analysis of the co-expressed and co-purified RadAB complex estimated the ratio of RadA to RadB to be 4 : 1, which suggests that the proteins interact with a specific stoichiometry. Based on a combination of analyses, including size exclusion chromatography, Western blot and electron microscopy observations, we suggest that RadA multimerizes into a ring-like structure in the absence of DNA and nucleoside co-factor.


Subject(s)
Archaeal Proteins/chemistry , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Haloferax volcanii/metabolism , Rec A Recombinases/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/isolation & purification , Archaeal Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/isolation & purification , Dimerization , Haloferax volcanii/chemistry , Haloferax volcanii/genetics , Protein Binding , Rec A Recombinases/genetics , Rec A Recombinases/isolation & purification , Rec A Recombinases/metabolism
8.
Ther Deliv ; 8(7): 511-519, 2017 07.
Article in English | MEDLINE | ID: mdl-28555530

ABSTRACT

The long blood circulation time of albumin has been clinically utilized as a half-life extension technology for improved drug performance. The availability of one free thiol for site-selective chemical conjugation offers an alternative approach to current genetic fusion and association-based products. This special report highlights important factors for successful conjugation that allows the reader to design and evaluate next-generation albumin conjugates. Albumin type, available conjugation chemistries, linker length, animal models and influence of conjugation on albumin pharmacokinetics and drug activity are discussed.


Subject(s)
Albumins/administration & dosage , Cysteine/chemistry , Drug Delivery Systems , Albumins/pharmacokinetics , Animals , Half-Life , Humans , Sulfhydryl Compounds
9.
Microb Cell Fact ; 16(1): 11, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28100236

ABSTRACT

BACKGROUND: Baker's yeast Saccharomyces cerevisiae is a proven host for the commercial production of recombinant biopharmaceutical proteins. For the manufacture of heterologous proteins with activities deleterious to the host it can be desirable to minimise production during the growth phase and induce production late in the exponential phase. Protein expression by regulated promoter systems offers the possibility of improving productivity in this way by separating the recombinant protein production phase from the yeast growth phase. Commonly used inducible promoters do not always offer convenient solutions for industrial scale biopharmaceutical production with engineered yeast systems. RESULTS: Here we show improved secretion of the antimicrobial protein, human ß-defensin-2, (hBD2), using the S. cerevisiae MET17 promoter by repressing expression during the growth phase. In shake flask culture, a higher final concentration of human ß-defensin-2 was obtained using the repressible MET17 promoter system than when using the strong constitutive promoter from proteinase B (PRB1) in a yeast strain developed for high-level commercial production of recombinant proteins. Furthermore, this was achieved in under half the time using the MET17 promoter compared to the PRB1 promoter. Cell density, plasmid copy-number, transcript level and protein concentration in the culture supernatant were used to study the effects of different initial methionine concentrations in the culture media for the production of human ß-defensin-2 secreted from S. cerevisiae. CONCLUSIONS: The repressible S. cerevisiae MET17 promoter was more efficient than a strong constitutive promoter for the production of human ß-defensin-2 from S. cerevisiae in small-scale culture and offers advantages for the commercial production of this and other heterologous proteins which are deleterious to the host organism. Furthermore, the MET17 promoter activity can be modulated by methionine alone, which has a safety profile applicable to biopharmaceutical manufacturing.


Subject(s)
Cysteine Synthase/genetics , Gene Expression Regulation, Fungal , Promoter Regions, Genetic , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , beta-Defensins/biosynthesis , beta-Defensins/genetics , Culture Media/chemistry , Humans , Methionine/pharmacology , Plasmids , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Serine Endopeptidases/genetics
10.
Immunity ; 45(3): 497-512, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27637145

ABSTRACT

During the humoral immune response, B cells undergo a dramatic change in phenotype to enable antibody affinity maturation in germinal centers (GCs). Using genome-wide chromosomal conformation capture (Hi-C), we found that GC B cells undergo massive reorganization of the genomic architecture that encodes the GC B cell transcriptome. Coordinate expression of genes that specify the GC B cell phenotype-most prominently BCL6-was achieved through a multilayered chromatin reorganization process involving (1) increased promoter connectivity, (2) formation of enhancer networks, (3) 5' to 3' gene looping, and (4) merging of gene neighborhoods that share active epigenetic marks. BCL6 was an anchor point for the formation of GC-specific gene and enhancer loops on chromosome 3. Deletion of a GC-specific, highly interactive locus control region upstream of Bcl6 abrogated GC formation in mice. Thus, large-scale and multi-tiered genomic three-dimensional reorganization is required for coordinate expression of phenotype-driving gene sets that determine the unique characteristics of GC B cells.


Subject(s)
Antibody Affinity/immunology , B-Lymphocytes/immunology , Genome/immunology , Germinal Center/immunology , Locus Control Region/immunology , Animals , Antibody Formation/immunology , Chromosomes, Human, Pair 3/immunology , Epigenesis, Genetic/immunology , Humans , Immunity, Humoral/immunology , Mice , Promoter Regions, Genetic/immunology , Proto-Oncogene Proteins c-bcl-6/immunology
11.
J Biol Chem ; 289(50): 34583-94, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25344603

ABSTRACT

Albumin is an abundant blood protein that acts as a transporter of a plethora of small molecules like fatty acids, hormones, toxins, and drugs. In addition, it has an unusual long serum half-life in humans of nearly 3 weeks, which is attributed to its interaction with the neonatal Fc receptor (FcRn). FcRn protects albumin from intracellular degradation via a pH-dependent cellular recycling mechanism. To understand how FcRn impacts the role of albumin as a distributor, it is of importance to unravel the structural mechanism that determines pH-dependent binding. Here, we show that although the C-terminal domain III (DIII) of human serum albumin (HSA) contains the principal binding site, the N-terminal domain I (DI) is important for optimal FcRn binding. Specifically, structural inspection of human FcRn (hFcRn) in complex with HSA revealed that two exposed loops of DI were in proximity with the receptor. To investigate to what extent these contacts affected hFcRn binding, we targeted selected amino acid residues of the loops by mutagenesis. Screening by in vitro interaction assays revealed that several of the engineered HSA variants showed decreased binding to hFcRn, which was also the case for two missense variants with mutations within these loops. In addition, four of the variants showed improved binding. Our findings demonstrate that both DI and DIII are required for optimal binding to FcRn, which has implications for our understanding of the FcRn-albumin relationship and how albumin acts as a distributor. Such knowledge may inspire development of novel HSA-based diagnostics and therapeutics.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Receptors, Fc/metabolism , Serum Albumin/chemistry , Serum Albumin/metabolism , Amino Acid Substitution , Binding, Competitive , Humans , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Protein Binding , Protein Stability , Protein Structure, Tertiary , Serum Albumin/genetics
12.
J Biol Chem ; 289(19): 13492-502, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24652290

ABSTRACT

A major challenge for the therapeutic use of many peptides and proteins is their short circulatory half-life. Albumin has an extended serum half-life of 3 weeks because of its size and FcRn-mediated recycling that prevents intracellular degradation, properties shared with IgG antibodies. Engineering the strictly pH-dependent IgG-FcRn interaction is known to extend IgG half-life. However, this principle has not been extensively explored for albumin. We have engineered human albumin by introducing single point mutations in the C-terminal end that generated a panel of variants with greatly improved affinities for FcRn. One variant (K573P) with 12-fold improved affinity showed extended serum half-life in normal mice, mice transgenic for human FcRn, and cynomolgus monkeys. Importantly, favorable binding to FcRn was maintained when a single-chain fragment variable antibody was genetically fused to either the N- or the C-terminal end. The engineered albumin variants may be attractive for improving the serum half-life of biopharmaceuticals.


Subject(s)
Albumins/metabolism , Histocompatibility Antigens Class I/metabolism , Receptors, Fc/metabolism , Albumins/genetics , Albumins/pharmacology , Amino Acid Substitution , Animals , Female , Half-Life , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/pharmacology , Humans , Macaca fascicularis , Mice , Mutation, Missense , Receptors, Fc/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology
13.
BMC Struct Biol ; 13: 12, 2013 Jul 04.
Article in English | MEDLINE | ID: mdl-23822808

ABSTRACT

BACKGROUND: Strict regulation of replisome components is essential to ensure the accurate transmission of the genome to the next generation. The sliding clamp processivity factors play a central role in this regulation, interacting with both DNA polymerases and multiple DNA processing and repair proteins. Clamp binding partners share a common peptide binding motif, the nature of which is essentially conserved from phage through to humans. Given the degree of conservation of these motifs, much research effort has focussed on understanding how the temporal and spatial regulation of multiple clamp binding partners is managed. The bacterial sliding clamps have come under scrutiny as potential targets for rational drug design and comprehensive understanding of the structural basis of their interactions is crucial for success. RESULTS: In this study we describe the crystal structure of a complex of the E. coli ß-clamp with a 12-mer peptide from the UmuC protein. UmuC is the catalytic subunit of the translesion DNA polymerase, Pol V (UmuD'2C). Due to its potentially mutagenic action, Pol V is tightly regulated in the cell to limit access to the replication fork. Atypically for the translesion polymerases, both bacterial and eukaryotic, Pol V is heterotrimeric and its ß-clamp binding motif (³57QLNLF³6¹) is internal to the protein, rather than at the more usual C-terminal position. Our structure shows that the UmuC peptide follows the overall disposition of previously characterised structures with respect to the highly conserved glutamine residue. Despite good agreement with the consensus ß-clamp binding motif, distinct variation is shown within the hydrophobic binding pocket. While UmuC Leu-360 interacts as noted in other structures, Phe-361 does not penetrate the pocket at all, sitting above the surface. CONCLUSION: Although the ß-clamp binding motif of UmuC conforms to the consensus sequence, variation in its mode of clamp binding is observed compared to related structures, presumably dictated by the proximal aspartate residues that act as linker to the poorly characterised, unique C-terminal domain of UmuC. Additionally, interactions between Asn-359 of UmuC and Arg-152 on the clamp surface may compensate for the reduced interaction of Phe-361.


Subject(s)
DNA-Directed DNA Polymerase/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Protein Structure, Tertiary
14.
Curr Opin Immunol ; 25(3): 339-46, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23725655

ABSTRACT

The BCL6 oncogenic repressor is a master regulator of humoral immunity and B-cell lymphoma survival. Whereas much research has focused on its regulation and function in germinal center B-cells, its role in other mature lymphoid cell compartments is less clear. A novel role for BCL6 in follicular T helper cell development was recently uncovered. The latest discoveries reveal that BCL6 is also an important regulator of other specialized helper T-cell subsets within germinal centers, pre-germinal center events, and peripheral T-cell effector functions. Here, we review newly discovered roles for BCL6 in lymphocyte subsets residing within and outside of germinal centers, and discuss their implications with respect to the molecular mechanisms of BCL6 regulation and potential links to B and T-cell lymphomas.


Subject(s)
Lymphocytes/immunology , Lymphoma, B-Cell/immunology , Lymphoma, T-Cell/immunology , Proto-Oncogene Proteins c-bcl-6/immunology , Animals , Germinal Center/immunology , Humans , Transcription, Genetic
15.
Cancer Cell ; 23(5): 677-92, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23680150

ABSTRACT

The EZH2 histone methyltransferase is highly expressed in germinal center (GC) B cells and targeted by somatic mutations in B cell lymphomas. Here, we find that EZH2 deletion or pharmacologic inhibition suppresses GC formation and functions. EZH2 represses proliferation checkpoint genes and helps establish bivalent chromatin domains at key regulatory loci to transiently suppress GC B cell differentiation. Somatic mutations reinforce these physiological effects through enhanced silencing of EZH2 targets. Conditional expression of mutant EZH2 in mice induces GC hyperplasia and accelerated lymphomagenesis in cooperation with BCL2. GC B cell (GCB)-type diffuse large B cell lymphomas (DLBCLs) are mostly addicted to EZH2 but not the more differentiated activated B cell (ABC)-type DLBCLs, thus clarifying the therapeutic scope of EZH2 targeting.


Subject(s)
B-Lymphocytes/metabolism , Cell Transformation, Neoplastic/genetics , Germinal Center/metabolism , Mutation , Polycomb Repressive Complex 2/physiology , Animals , Cell Differentiation , Cell Proliferation , Enhancer of Zeste Homolog 2 Protein , Gene Deletion , Gene Expression Regulation, Neoplastic , Germinal Center/drug effects , Histones/metabolism , Methylation , Mice , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/physiology
16.
Blood ; 121(21): 4311-20, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23580662

ABSTRACT

B-cell maturation and germinal center (GC) formation are dependent on the interplay between BCL6 and other transcriptional regulators. FOXP1 is a transcription factor that regulates early B-cell development, but whether it plays a role in mature B cells is unknown. Analysis of human tonsillar B-cell subpopulations revealed that FOXP1 shows the opposite expression pattern to BCL6, suggesting that FOXP1 regulates the transition from resting follicular B cell to activated GC B cell. Chromatin immunoprecipitation-on-chip and gene expression assays on B cells indicated that FOXP1 acts as a transcriptional activator and repressor of genes involved in the GC reaction, half of which are also BCL6 targets. To study FOXP1 function in vivo, we developed transgenic mice expressing human FOXP1 in lymphoid cells. These mice exhibited irregular formation of splenic GCs, showing a modest increase in naïve and marginal-zone B cells and a significant decrease in GC B cells. Furthermore, aberrant expression of FOXP1 impaired transcription of noncoding γ1 germline transcripts and inhibited efficient class switching to the immunoglobulin G1 isotype. These studies show that FOXP1 is physiologically downregulated in GC B cells and that aberrant expression of FOXP1 impairs mechanisms triggered by B-cell activation, potentially contributing to B-cell lymphomagenesis.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Forkhead Transcription Factors/metabolism , Germinal Center/cytology , Lymphoma/immunology , Repressor Proteins/metabolism , Animals , Cell Differentiation/immunology , Cell Line , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Down-Regulation/immunology , Forkhead Transcription Factors/immunology , Germinal Center/immunology , Humans , Lymphoma/metabolism , Mice , Mice, Transgenic , Palatine Tonsil/cytology , Proto-Oncogene Proteins c-bcl-6 , Repressor Proteins/immunology , Transcriptional Activation/immunology
17.
Archaea ; 2012: 951010, 2012.
Article in English | MEDLINE | ID: mdl-23209375

ABSTRACT

Biochemical and structural analysis of archaeal proteins has enabled us to gain great insight into many eukaryotic processes, simultaneously offering fascinating glimpses into the adaptation and evolution of proteins at the extremes of life. The archaeal PCNAs, central to DNA replication and repair, are no exception. Characterisation of the proteins alone, and in complex with both peptides and protein binding partners, has demonstrated the diversity and subtlety in the regulatory role of these sliding clamps. Equally, studies have provided valuable detailed insight into the adaptation of protein interactions and mechanisms that are necessary for life in extreme environments.


Subject(s)
Adaptation, Biological , Archaea/genetics , Archaeal Proteins/genetics , Evolution, Molecular , Proliferating Cell Nuclear Antigen/genetics , Archaea/physiology , Archaeal Proteins/metabolism , DNA Repair , DNA Replication , Models, Molecular , Proliferating Cell Nuclear Antigen/metabolism
18.
Archaea ; 2012: 719092, 2012.
Article in English | MEDLINE | ID: mdl-22973163

ABSTRACT

Halophilic archaea maintain intracellular salt concentrations close to saturation to survive in high-salt environments and their cellular processes have adapted to function under these conditions. Little is known regarding halophilic adaptation of the DNA processing machinery, particularly intriguing since protein-DNA interactions are classically salt sensitive. To investigate such adaptation, we characterised the DNA-binding capabilities of recombinant RPA3 from Haloferax volcanii (HvRPA3). Under physiological salt conditions (3 M KCl), HvRPA3 is monomeric, binding 18 nucleotide ssDNA with nanomolar affinity, demonstrating that RPAs containing the single OB-fold/zinc finger architecture bind with broadly comparable affinity to two OB-fold/zinc finger RPAs. Reducing the salt concentration to 1 M KCl induces dimerisation of the protein, which retains its ability to bind DNA. On circular ssDNA, two concentration-dependent binding modes are observed. Conventionally, increased salt concentration adversely affects DNA binding but HvRPA3 does not bind DNA in 0.2 M KCl, although multimerisation may occlude the binding site. The single N-terminal OB-fold is competent to bind DNA in the absence of the C-terminal zinc finger, albeit with reduced affinity. This study represents the first quantitative characterisation of DNA binding in a halophilic protein in extreme salt concentrations.


Subject(s)
Adaptation, Biological , Archaeal Proteins/chemistry , DNA, Archaeal/chemistry , DNA-Binding Proteins/chemistry , Haloferax volcanii/chemistry , Archaeal Proteins/genetics , Binding Sites , Chromatography, Gel/methods , DNA Replication , DNA, Single-Stranded/chemistry , DNA-Binding Proteins/genetics , Electrophoresis, Polyacrylamide Gel , Haloferax volcanii/genetics , Potassium Chloride/chemistry , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Species Specificity , Trace Elements/chemistry , Zinc Fingers
19.
Transcription ; 3(3): 130-45, 2012.
Article in English | MEDLINE | ID: mdl-22771948

ABSTRACT

The methylation of histones is a fundamental epigenetic process regulating gene expression programs in mammalian cells. Dysregulated patterns of histone methylation are directly implicated in malignant transformation. Here, we report the unexpected finding that the invasive extracellular matrix degrading endoglycosidase heparanase enters the nucleus of activated human T lymphocytes and regulates the transcription of a cohort of inducible immune response genes by controlling histone H3 methylation patterns. It was found that nuclear heparanase preferentially associates with euchromatin. Genome-wide ChIP-on-chip analyses showed that heparanase is recruited to both the promoter and transcribed regions of a distinct cohort of transcriptionally active genes. Knockdown and overexpression of the heparanase gene also showed that chromatin-bound heparanase is a prerequisite for the transcription of a subset of inducible immune response genes in activated T cells. Furthermore, the actions of heparanase seem to influence gene transcription by associating with the demethylase LSD1, preventing recruitment of the methylase MLL and thereby modifying histone H3 methylation patterns. These data indicate that heparanase belongs to an emerging class of proteins that play an important role in regulating transcription in addition to their well-recognized extra-nuclear functions.


Subject(s)
Chromatin/metabolism , Glucuronidase/metabolism , Histones/metabolism , T-Lymphocytes/metabolism , Transcriptional Activation , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Epigenesis, Genetic , Fluorescent Antibody Technique , Glucuronidase/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/genetics , Humans , Methylation , Mice , Mice, Inbred C57BL , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Real-Time Polymerase Chain Reaction
20.
Proc Natl Acad Sci U S A ; 109(23): 9083-8, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22615383

ABSTRACT

Emerging evidence suggests that chromatin adopts a nonrandom 3D topology and that the organization of genes into structural hubs and domains affects their transcriptional status. How chromatin conformation changes in diseases such as cancer is poorly understood. Moreover, how oncogenic transcription factors, which bind to thousands of sites across the genome, influence gene regulation by globally altering the topology of chromatin requires further investigation. To address these questions, we performed unbiased high-resolution mapping of intra- and interchromosome interactions upon overexpression of ERG, an oncogenic transcription factor frequently overexpressed in prostate cancer as a result of a gene fusion. By integrating data from genome-wide chromosome conformation capture (Hi-C), ERG binding, and gene expression, we demonstrate that oncogenic transcription factor overexpression is associated with global, reproducible, and functionally coherent changes in chromatin organization. The results presented here have broader implications, as genomic alterations in other cancer types frequently give rise to aberrant transcription factor expression, e.g., EWS-FLI1, c-Myc, n-Myc, and PML-RARα.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Nucleic Acid Conformation , Trans-Activators/metabolism , Base Sequence , Cell Line , Chromatin Immunoprecipitation , DNA Primers/genetics , Flow Cytometry , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Transcriptional Regulator ERG
SELECTION OF CITATIONS
SEARCH DETAIL
...