Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Host Microbe ; 29(10): 1531-1544.e9, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34536347

ABSTRACT

The minimal genetic requirements for microbes to survive within multiorganism communities, including host-pathogen interactions, remain poorly understood. Here, we combined targeted gene mutagenesis with phenotype-guided genetic reassembly to identify a cooperative network of SPI-2 T3SS effector genes that are sufficient for Salmonella Typhimurium (STm) to cause disease in a natural host organism. Five SPI-2 effector genes support pathogen survival within the host cell cytoplasm by coordinating bacterial replication with Salmonella-containing vacuole (SCV) division. Unexpectedly, this minimal genetic repertoire does not support STm systemic infection of mice. In vivo screening revealed a second effector-gene network, encoded by the spv operon, that expands the life cycle of STm from growth in cells to deep-tissue colonization in a murine model of typhoid fever. Comparison between Salmonella infection models suggests how cooperation between effector genes drives tissue tropism in a pathogen group.


Subject(s)
Bacterial Proteins/genetics , Gene Regulatory Networks , Salmonella Infections/microbiology , Salmonella typhimurium/genetics , Animals , Bacterial Proteins/metabolism , Cytoplasm/microbiology , Female , Genomic Islands , Host-Pathogen Interactions , Humans , Mice , Mice, Inbred C57BL , Microbial Viability , Operon , Salmonella typhimurium/growth & development , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/physiology , Tropism , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL