Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 24(3): 1475-1482, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36780271

ABSTRACT

Through the postpolymerization modification of poly(allyl glycidyl ether) (PAGE), a functionalizable polyether with a poly(ethylene oxide) backbone, we engineered a new class of highly tunable polyampholyte materials. These polyampholytes can be synthesized to have several useful properties, including low cytotoxicity and pH-responsive coacervate formation. In this study, we used PAGE-based polyampholytes (PAGE-PAs) for the cryopreservation of mammalian cell suspensions. Typically, dimethyl sulfoxide (DMSO) is the cryoprotectant used for preserving mammalian cells, but DMSO suffers from key drawbacks including toxicity and difficult post-thaw removal that motivates the development of new materials and methods. Toxicity and post-thaw survival were dependent on PAGE-PA composition with the highest immediate post-thaw survival for normal human dermal fibroblasts occurring for the least toxic PAGE-PA at a cation/anion ratio of 35:65. With low toxicity, the PAGE-PA concentration could be increased in order to increase immediate post-thaw survival of the immortalized mouse embryonic fibroblasts (NIH/3T3). While immediate post-thaw viability was achieved using only the PAGE-PAs, long-term cell survival was low, highlighting the challenges involved with the design of cryoprotective polyampholytes. An environment utilizing both PAGE-PAs and DMSO in a cryoprotective solution offered promising post-thaw viabilities exceeding 70%, with long-term metabolic activities comparable to unfrozen cells.


Subject(s)
Dimethyl Sulfoxide , Fibroblasts , Animals , Mice , Humans , Cell Survival , Cryopreservation/methods , Poly A , Mammals
2.
Macromolecules ; 56(23)2023.
Article in English | MEDLINE | ID: mdl-38841360

ABSTRACT

To improve the circularity and performance of polyolefin materials, recent innovations have enabled the synthesis of polyolefins with new structural features such as cleavable breakpoints, functional chain ends, and unique comonomers. As new polyolefin structures become synthetically accessible, fundamental understanding of the effects of structural features on polymer (re)processing and mechanical performance is increasingly important. While bulk material properties are readily measured through conventional thermal or mechanical techniques, selective measurement of local material properties near structural defects is a major characterization challenge. Here, we synthesized a series of polyethylenes with selectively deuterated segments using a polyhomologation approach and employed vibrational spectroscopy to evaluate crystallization and melting of chain segments near features of interest (e.g., end groups, chain centers, and mid-chain structural defects). Chain-end functionality and defects were observed to strongly influence crystallinity of adjacent deuterated chain segments. Additionally, chain-end crystallinity was observed to have different molar mass dependence than mid-chain crystallinity. The synthesis and spectroscopy techniques demonstrated here can be applied to range of previously inaccessible deuterated polyethylene structures to provide direct insight into local crystallization behavior.

3.
ACS Macro Lett ; 11(3): 402-409, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35575371

ABSTRACT

A general and versatile synthetic strategy for producing practical quantities of a wide range of phenyl-group-terminated hetero- and homotelechelic semicrystalline polyethenes and amorphous atactic and semicrystalline isotactic poly(α-olefins) is reported. The phenyl groups serve as synthons for functionalities of additional classes of telechelic polyolefins that can be "unmasked" through simple high yielding postpolymerization reactions. A demonstration of the value of these materials as building blocks for structural classes of polyolefin-based synthetic polymers was provided by syntheses of well-defined polyolefin-polyester di- and triblock copolymers that were shown to adopt microphase-segregated nanostructured mesophases in the condensed phase.


Subject(s)
Polyenes , Polymers , Alkenes , Polyesters/chemistry , Polymers/chemistry
4.
Biomacromolecules ; 21(8): 3047-3055, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32649830

ABSTRACT

Under the right conditions, some biological systems can maintain high viability after being frozen and thawed, but many others (e.g., organs and many mammalian cells) cannot. To increase the rates of post-thaw viability and widen the library of living cells and tissues that can be stored frozen, an improved understanding of the mode of action of polymeric cryoprotectants is required. Here, we present a polymeric cryoprotectant, poly(methyl glycidyl sulfoxide) (PMGS), that achieved higher post-thaw viability for fibroblast cells than its small-molecule analogue dimethyl sulfoxide. By limiting the amount of water that freezes and facilitating cellular dehydration after ice nucleation, PMGS mitigates the mechanical and osmotic stresses that the freezing of water imparts on cells and facilitates higher-temperature vitrification of the remaining unfrozen volume. The development of PMGS advances a fundamental physical understanding of polymer-mediated cryopreservation, which enables new material design for long-term preservation of complex cellular networks and tissue.


Subject(s)
Cryopreservation , Polymers , Animals , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Freezing , Vitrification
5.
Biomacromolecules ; 19(1): 248-255, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29185730

ABSTRACT

The development of improved cryopreservative materials is necessary to enable complete recovery of living cells and tissue after frozen storage. Remarkably, poly(vinyl alcohol) (PVA) displays some of the same cryoprotective properties as many antifreeze proteins found in cold tolerant organisms. In particular, PVA is very effective at halting the Ostwald ripening of ice, a process that mechanically damages cells and tissue. Despite the large practical importance of such a property, the mechanism by which PVA interacts with ice is poorly understood, hindering the development of improved cryoprotective materials. Herein, we quantitatively evaluated ice growth kinetics in the presence of PVA at different pH conditions and in the presence of a range of neutral salts. We demonstrated that pH, but not salt identity, alters the ability of PVA to halt ice grain coarsening. These observations are consistent with hydrogen-bonding playing a crucial role in PVA-mediated ice recrystallization inhibition. The evolution of the size distribution of ice crystals with annealing was consistent with incomplete surface coverage of ice with PVA. Binding assay measurements of dissolved fluorescently labeled PVA in an ice slurry showed that PVA interacts with ice through weak adsorption (<9%) to the ice crystal surface, which stands in contrast to fluorescently tagged type III antifreeze peptide, which binds strongly (ca. 64%) under the same conditions.


Subject(s)
Ice , Polyvinyl Alcohol/chemistry , Adsorption , Antifreeze Proteins/chemistry , Cryopreservation , Cryoprotective Agents/chemistry , Crystallization , Hydrogen Bonding , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...