Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Opt Express ; 26(26): 33841-33855, 2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30650816

ABSTRACT

PLAnetary Transits and Oscillations of stars (PLATO) is a medium sized mission (M3) selected by the European Space Agency (ESA) for launch in 2026. The PLATO payload includes 26 telescopes all based on a six-element refractive optical scheme. Some components will be eventually manufactured by S-FPL51, N-KZFS11 and S-FTM16 glass whose radiation resistance is partially or totally unknown. The radiation-resistance properties of such materials have been investigated by using a 60Co γ-rays source as probe. Each optical component has been characterized by a depth profile curve which describes the transmission loss as a function of the thickness in dependence of the impinging dose. A model to simulate the throughput of the whole instrument has been developed and used to verify the instrument performance considering different stellar spectra.

2.
Light Sci Appl ; 5(5): e16090, 2016 May.
Article in English | MEDLINE | ID: mdl-30167167

ABSTRACT

Spatio-temporal imaging of light propagation is very important in photonics because it provides the most direct tool available to study the interaction between light and its host environment. Sub-ps time resolution is needed to investigate the fine and complex structural features that characterize disordered and heterogeneous structures, which are responsible for a rich array of transport physics that have not yet been fully explored. A newly developed wide-field imaging system enables us to present a spatio-temporal study on light transport in various disordered media, revealing properties that could not be properly assessed using standard techniques. By extending our investigation to an almost transparent membrane, a configuration that has been difficult to characterize until now, we unveil the peculiar physics exhibited by such thin scattering systems with transport features that go beyond mainstream diffusion modeling, despite the occurrence of multiple scattering.

3.
Opt Express ; 23(24): A1472-84, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698795

ABSTRACT

We theoretically and numerically investigate the capability of disordered media to enhance the optical path length in dielectric slabs and augment their light absorption efficiency due to scattering. We first perform a series of Monte Carlo simulations of random walks to determine the path length distribution in weakly to strongly (single to multiple) scattering, non-absorbing dielectric slabs under normally incident light and derive analytical expressions for the path length enhancement in these two limits. Quite interestingly, while multiple scattering is expected to produce long optical paths, we find that media containing a vanishingly small amount of scatterers can still provide high path length enhancements due to the very long trajectories sustained by total internal reflection at the slab interfaces. The path length distributions are then used to calculate the light absorption efficiency of media with varying absorption coefficients. We find that maximum absorption enhancement is obtained at an optimal scattering strength, in-between the single-scattering and the diffusive (strong multiple-scattering) regimes. This study can guide experimentalists towards more efficient and potentially low-cost solutions in photovoltaic technologies.

4.
Adv Opt Mater ; 3(6): 722-743, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26640755

ABSTRACT

Over the last few years, micro- and nanophotonics have roused a strong interest in the scientific community for their promising impact on the development of novel kinds of solar cells. Certain thin- and ultrathin-film solar cells are made of innovative, often cheap, materials which suffer from a low energy conversion efficiency. Light-trapping mechanisms based on nanophotonics principles are particularly suited to enhance the absorption of electromagnetic waves in these thin media without changing the material composition. In this review, the latest results achieved in this field are reported, with particular attention to the realization of prototypes, spanning from deterministic to disordered photonic architectures, and from dielectric to metallic nanostructures.

5.
Adv Mater ; 27(26): 3883-7, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26033690

ABSTRACT

The first microscopic artificial walker equipped with liquid-crystalline elastomer muscle is reported. The walker is fabricated by direct laser writing, is smaller than any known living terrestrial creatures, and is capable of several autonomous locomotions on different surfaces.

6.
Sci Rep ; 4: 6075, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25123449

ABSTRACT

Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.


Subject(s)
Chitin/metabolism , Coleoptera/physiology , Light , Refractometry , Scattering, Radiation , Animals , Anisotropy , Color
7.
Phys Rev Lett ; 112(14): 143901, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24765963

ABSTRACT

Structural correlations in disordered media are known to affect significantly the propagation of waves. In this Letter, we theoretically investigate the transport and localization of light in 2D photonic structures with short-range correlated disorder. The problem is tackled semianalytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scattering approximation. We find that short-range correlations make it possible to easily tune the transport mean free path by more than a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed by numerical finite-difference time-domain calculations. This study therefore shows that disorder engineering can offer fine control over light transport and localization in planar geometries, which may open new opportunities in both fundamental and applied photonics research.


Subject(s)
Models, Theoretical , Optics and Photonics/methods , Anisotropy , Light , Photons , Scattering, Radiation
8.
Opt Express ; 21 Suppl 3: A460-8, 2013 May 06.
Article in English | MEDLINE | ID: mdl-24104434

ABSTRACT

The effect of periodic and disordered photonic structures on the absorption efficiency of amorphous and crystalline Silicon thin-film solar cells is investigated numerically. We show that disordered patterns possessing a short-range correlation in the position of the holes yield comparable, or even superior, absorption enhancements than periodic (photonic crystal) patterns. This work provides clear evidence that non-deterministic photonic structures represent a viable alternative strategy for photon management in thin-film solar cells, thereby opening the route towards more efficient and potentially cheaper photovoltaic technologies.

9.
Opt Express ; 21 Suppl 2: A268-75, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482289

ABSTRACT

The surface of thin-film solar cells can be tailored with photonic nanostructures to allow light trapping in the absorbing medium. This in turn increases the optical thickness of the film and thus enhances their absorption. Such a coherent light trapping is generally accomplished with deterministic photonic architectures. Here, we experimentally explore the use of a different nanostructure, a disordered one, for this purpose. We show that the disorder-induced modes in the film allow improvements in the absorption over a broad range of frequencies and impinging angles.

10.
Article in English | MEDLINE | ID: mdl-23496473

ABSTRACT

We present a probabilistic theory of random walks in turbid media with nonscattering regions. It is shown that important characteristics such as diffusion constants, average step lengths, crossing statistics, and void spacings can be analytically predicted. The theory is validated using Monte Carlo simulations of light transport in heterogeneous systems in the form of random sphere packings and good agreement is found. The role of step correlations is discussed and differences between unbounded and bounded systems are investigated. Our results are relevant to the optics of heterogeneous systems in general and represent an important step forward in the understanding of media with strong (fractal) heterogeneity in particular.


Subject(s)
Diffusion , Light , Models, Statistical , Nephelometry and Turbidimetry/methods , Scattering, Radiation , Computer Simulation , Viscosity
11.
Nat Mater ; 11(12): 1017-22, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23042416

ABSTRACT

Elaborating reliable and versatile strategies for efficient light coupling between free space and thin films is of crucial importance for new technologies in energy efficiency. Nanostructured materials have opened unprecedented opportunities for light management, notably in thin-film solar cells. Efficient coherent light trapping has been accomplished through the careful design of plasmonic nanoparticles and gratings, resonant dielectric particles and photonic crystals. Alternative approaches have used randomly textured surfaces as strong light diffusers to benefit from their broadband and wide-angle properties. Here, we propose a new strategy for photon management in thin films that combines both advantages of an efficient trapping due to coherent optical effects and broadband/wide-angle properties due to disorder. Our approach consists of the excitation of electromagnetic modes formed by multiple light scattering and wave interference in two-dimensional random media. We show, by numerical calculations, that the spectral and angular responses of thin films containing disordered photonic patterns are intimately related to the in-plane light transport process and can be tuned through structural correlations. Our findings, which are applicable to all waves, are particularly suited for improving the absorption efficiency of thin-film solar cells and can provide a new approach for high-extraction-efficiency light-emitting diodes.

12.
Phys Rev Lett ; 108(11): 110604, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22540452

ABSTRACT

Lévy flights constitute a broad class of random walks that occur in many fields of research, from biology to economy and geophysics. The recent advent of Lévy glasses allows us to study Lévy flights-and the resultant superdiffusion-using light waves. This raises several questions about the influence of interference on superdiffusive transport. Superdiffusive structures have the extraordinary property that all points are connected via direct jumps, which is expected to have a strong impact on interference effects such as weak and strong localization. Here we report on the experimental observation of weak localization in Lévy glasses and compare our results with a recently developed theory for multiple scattering in superdiffusive media. Experimental results are in good agreement with theory and allow us to unveil the light propagation inside a finite-size superdiffusive system.

13.
Opt Lett ; 37(3): 368-70, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22297355

ABSTRACT

Metallic nanoparticles are known to enhance nonlinear optical processes due to a local enhancement of the optical field. This strategy has been proposed to enhance downconversion in thin film solar cells, but has various disadvantages, among which is the fact that the enhancement occurs only in a tiny volume close to the particles. We report on a very different physical mechanism that can lead to significant downconversion enhancement, namely, that of resonant light scattering, and which is a large volume effect. We show that only a tiny amount of resonantly scattering metallic (aluminum) nanoparticles is enough to create a significant enhancement of the fluorescence of dye molecules in the visible wavelength range. The strategy can be applied in general to increase the emission of UV-absorbing constituents, and is of particular use for solar energy.


Subject(s)
Aluminum/chemistry , Metal Nanoparticles/chemistry , Scattering, Radiation , Ultraviolet Rays , Spectrometry, Fluorescence
14.
Nano Lett ; 10(7): 2480-3, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20518537

ABSTRACT

With their potential for spectacular applications, like superlensing and cloaking, metamaterials are a powerful class of nanostructured materials. All these applications rely on the metamaterials acting as a homogeneous material. We investigate a negative index metamaterial with a phase-sensitive near-field microscope and measure the optical phase as a function of distance. Close to the metamaterial we observe extremely large spatial phase variations within a single unit cell which vanish on a 200 nm length scale from the sample. These deviations of a state-of-the-art metamaterial from a homogeneous medium can be important for nanoscale applications.

15.
Opt Lett ; 35(12): 2001-3, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20548366

ABSTRACT

We present a phase-sensitive near-field study of speckle fields from photonic crystals in the presence of disorder. We observe phase singularities (vortices) and analyze their statistical properties and screening effects. The experimental results show a clear polarization dependence, not only in their morphological parameters but also in their spatial distribution.

16.
Nano Lett ; 8(9): 2872-7, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18698727

ABSTRACT

A novel inverse imprinting procedure for nanolithography is presented which offers a transfer accuracy and feature definition that is comparable to state-of-the-art nanofabrication techniques. We illustrate the fabrication quality of a demanding nanophotonic structure: a photonic crystal waveguide. Local examination using photon scanning tunneling microscopy (PSTM) shows that the resulting nanophotonic structures have excellent guiding properties at wavelengths in the telecommunications range, which indicates a high quality of the local structure and the overall periodicity.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(4 Pt 1): 040702, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17155014

ABSTRACT

We report on the observation of self-alignment of nematic liquid crystals into colloidal photonic crystals, over distances much larger than the typical size of the voids between the spheres. We observe that the infiltrated structure possesses a unique optical axis that is determined by an intrinsic structural anisotropy of photonic crystal opals. We develop a simple model to describe this self-alignment based on the connectivity of the pores. The resulting structure constitutes a polarization dependent photonic crystal that can be controlled electrically.

SELECTION OF CITATIONS
SEARCH DETAIL
...