Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 894690, 2022.
Article in English | MEDLINE | ID: mdl-35783978

ABSTRACT

The Chicxulub bolide impact has been linked to a mass extinction of plants at the Cretaceous-Paleogene boundary (KPB; ∼66 Ma), but how this extinction affected plant ecological strategies remains understudied. Previous work in the Williston Basin, North Dakota, indicates that plants pursuing strategies with a slow return-on-investment of nutrients abruptly vanished after the KPB, consistent with a hypothesis of selection against evergreen species during the globally cold and dark impact winter that followed the bolide impact. To test whether this was a widespread pattern we studied 1,303 fossil leaves from KPB-spanning sediments in the Denver Basin, Colorado. We used the relationship between petiole width and leaf mass to estimate leaf dry mass per area (LMA), a leaf functional trait negatively correlated with rate of return-on-investment. We found no evidence for a shift in this leaf-economic trait across the KPB: LMA remained consistent in both its median and overall distribution from approximately 67 to 65 Ma. However, we did find spatio-temporal patterns in LMA, where fossil localities with low LMA occurred more frequently near the western margin of the basin. These western margin localities are proximal to the Colorado Front Range of the Rocky Mountains, where an orographically driven high precipitation regime is thought to have developed during the early Paleocene. Among these western Denver Basin localities, LMA and estimated mean annual precipitation were inversely correlated, a pattern consistent with observations of both fossil and extant plants. In the Denver Basin, local environmental conditions over time appeared to play a larger role in determining viable leaf-economic strategies than any potential global signal associated with the Chicxulub bolide impact.

2.
Am J Bot ; 107(12): 1772-1785, 2020 12.
Article in English | MEDLINE | ID: mdl-33290590

ABSTRACT

PREMISE: The Eocene-Oligocene transition (EOT; 34-33 Ma) was marked by global cooling and increased seasonality and aridity, leading to a shift in North American floras from subtropical forests to deciduous hardwood forests similar to today. This shift is well documented taxonomically and biogeographically, but its ecological nature is less known. METHODS: Using the relationship between petiole cross-sectional area and leaf mass, we estimated leaf dry mass per area (LMA), a functional trait tied to plant resource investment and expenditure, at 22 western North American sites spanning the EOT to determine how the broad restructuring of vegetation during this time was reflected in leaf economics. RESULTS: There was no overall shift in LMA between pre-EOT and post-EOT floras; instead, changes in LMA across sites were mostly driven by a negative correlation with dry-season precipitation and a positive correlation with paleoelevation. These patterns held for both whole sites and subsets of sites containing taxa with similar biogeographical histories (taxa that persisted in the highlands across the EOT or that migrated to the lowlands) and are consistent with most observations in extant floras. CONCLUSIONS: Our data provide a geological context for understanding environmentally paced changes in leaf-economic strategies, particularly linking leaf economic strategies to dry-season precipitation and paleoelevation.


Subject(s)
Forests , Plant Leaves , Plants , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...