Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e16347, 2023.
Article in English | MEDLINE | ID: mdl-37941933

ABSTRACT

Background: The psyllid, Bactericera cockerelli, is an insect vector of 'Candidatus Liberibacter' causing "Zebra chip" disease that affects potato and other Solanaceae crops worldwide. In the present study, we analyzed the bacterial communities associated with the insect vector Bactericera cockerelli central haplotype of tomato crop fields in four regions from Mexico. Methods: PCR was used to amplify the mitochondrial cytochrome oxidase I gene (mtCOI) and then analyze the single nucleotide polymorphisms (SNP) and phylogenetic analysis for haplotype identification of the isolated B. cockerelli. Moreover, we carried out the microbial diversity analysis of several B. cockerelli collected from four regions of Mexico through the NGS sequencing of 16S rRNA V3 region. Finally, Wolbachia was detected by the wsp gene PCR amplification, which is the B. cockerelli facultative symbiont. Also we were able to confirm the relationship with several Wolbachia strains by phylogenetic analysis. Results: Our results pointed that B. cockerelli collected in the four locations from Mexico (Central Mexico: Queretaro, and Northern Mexico: Sinaloa, Coahuila, and Nuevo Leon) were identified, such as the central haplotype. Analyses of the parameters of the composition, relative abundance, and diversity (Shannon index: 1.328 ± 0.472; Simpson index 0.582 ± 0.167), showing a notably relatively few microbial species in B. cockerelli. Analyses identified various facultative symbionts, particularly the Wolbachia (Rickettsiales: Anaplasmataceae) with a relative abundance higher. In contrast, the genera of Sodalis and 'Candidatus Carsonella' (Gammaproteobacteria: Oceanospirillales: Halomonadaceae) were identified with a relatively low abundance. On the other hand, the relative abundance for the genus 'Candidatus Liberibacter' was higher only for some of the locations analyzed. PCR amplification of a fragment of the gene encoding a surface protein (wsp) of Wolbachia and phylogenetic analysis corroborated the presence of this bacterium in the central haplotype. Beta-diversity analysis revealed that the presence of the genus 'Candidatus Liberibacter' influences the microbiota structure of this psyllid species. Conclusions: Our data support that the members with the highest representation in microbial community of B. cockerelli central haplotype, comprise their obligate symbiont, Carsonella, and facultative symbionts. We also found evidence that among the factors analyzed, the presence of the plant pathogen affects the structure and composition of the bacterial community associated with B. cockerelli.


Subject(s)
Hemiptera , Solanum lycopersicum , Animals , Haplotypes , RNA, Ribosomal, 16S/genetics , Hemiptera/genetics , Phylogeny , Mexico , Bacteria/genetics , Liberibacter/genetics , Crops, Agricultural/genetics
2.
Plants (Basel) ; 12(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37896039

ABSTRACT

Salinity stress is one of the most important problems in crop productivity. Plant growth-promoting bacteria (PGPB) can also confer stress tolerance in plants under saline soil conditions. In a previous work, it was reported that bacteria strains isolated from hypersaline sites mitigated salt stress in chili pepper (Capsicum annuum var. Caballero) plants and promoted plant growth in some cases. The aim of this study was to evaluate the modulation of gene expression in C. annuum plants by bacteria strains isolated from saline environments. Two bacteria strains from high salinity ponds in Guerrero Negro, BCS, Mexico (Bacillus sp. strain 32 and Staphylococcus sp. strain 155) and Azospirillum brasilense Cd (DSM 1843) were used. Significant improvement in fresh weight yield (stem (28%), root (128.9%), and leaves (20%)) was observed in plants inoculated with Bacillus sp. strain 32. qPCR analysis showed that both strains modulated the expression of stress-responsive genes (MYB, ETR1, JAR1, WRKY, and LOX2) as well as heat shock factors and protein genes (CahsfA2, CahsfA3, CahsfB3a, CaDNaJ02, and CaDNaJ04). Finally, the expression levels of genes related to early salt stress and ISR showed differences in plants with dual treatment (bacteria-inoculated and salt-stressed) compared to plants with simple salinity stress. This work confirmed the differential modification of the transcriptional levels of genes observed in plants inoculated with bacteria under salinity stress.

3.
Can J Microbiol ; 67(5): 381-395, 2021 May.
Article in English | MEDLINE | ID: mdl-33136463

ABSTRACT

Bacteria can establish beneficial interactions with plants by acting as growth promoters and enhancing stress tolerance during plant interactions. Likewise, bacteria can develop multispecies communities where multiple interactions are possible. In this work, we assessed the physiological effects of three bacteria isolated from an arid environment (Bacillus niacini, Bacillus megaterium, and Moraxella osloensis) applied as single species or as a consortium on oregano (Origanum vulgare L.) plants. Moreover, we assessed the quorum-sensing (QS) signaling activity to determine the molecular communication between plant-growth-promoting bacteria. The plant inoculation with B. megaterium showed a positive effect on morphometric and physiologic parameters. However, no synergistic effects were observed when a bacterial consortium was inoculated. Likewise, activation of QS signaling in biofilm assays was observed only for interspecies interaction within the Bacillus genus, not for either interaction with M. osloensis. These results suggest a neutral or antagonistic interaction for interspecific bacterial biofilm establishment, as well as for the interaction with oregano plants when bacteria were inoculated in a consortium. In conclusion, we were able to determine that the bacterial interactions are not always positive or synergistic, but they also might be neutral or antagonistic.


Subject(s)
Biofilms/growth & development , Origanum/growth & development , Origanum/microbiology , Quorum Sensing , Bacillus/physiology , Bacillus megaterium/physiology , Bacterial Proteins/metabolism , Carbon-Sulfur Lyases/metabolism , DNA, Bacterial/genetics , Microbial Interactions , Microbial Viability , Moraxella/physiology , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Signal Transduction , Soil Microbiology
4.
Int J Syst Evol Microbiol ; 68(6): 2093-2101, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29638211

ABSTRACT

The 16SrXIII group from phytoplasma bacteria were identified in salivary glands from Homalodisca liturata, which were collected in El Comitán on the Baja California peninsula in Mexico. We were able to positively identify 15 16S rRNA gene sequences with the corresponding signature sequence of 'CandidatusPhytoplasma' (CAAGAYBATKATGTKTAGCYGGDCT) and in silico restriction fragment length polymorphism (RFLP) profiles (F value estimations) coupled with a phylogenetic analysis to confirm their relatedness to 'CandidatusPhytoplasma hispanicum', which in turn belongs to the 16SrXIII group. A restriction analysis was carried out with AluI and EcoRI to confirm that the five sequences belongs to subgroup D. The rest of the sequences did not exhibit any known RFLP profile related to a subgroup reported in the 16SrXIII group.


Subject(s)
Hemiptera/microbiology , Phylogeny , Phytoplasma/classification , Plant Diseases/microbiology , Animals , Bacterial Typing Techniques , DNA, Bacterial/genetics , Mexico , Phytoplasma/genetics , Phytoplasma/isolation & purification , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Plant Physiol Biochem ; 49(10): 1238-43, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21632256

ABSTRACT

The mRNA differential display technique was used to identify genes from Habanero pepper (Capsicum chinense Jacq.) seedlings whose expression is modified systemically by infection with the oomycete Phytophthora capsici L. Experiments with different oligonucleotide primer combinations revealed that no single gene was synthesised de novo. Instead, the quantitative accumulation of multiple transcripts was found. From these transcripts, levels of a nitrate reductase (Capsicum chinense nitrate reductase, CcNR), which has a high percentage of identity with other Solanaceae NRs, showed a consistent increase a few hours after inoculation (hai) with P. capsici. Reverse northern blotting revealed the existence of basal levels of CcNR transcripts in different adult tissues; however, systemic levels rose dramatically after spraying seedlings with salicylic acid (SA) and ethephon (ET) but not with methyl jasmonate (MeJa). Both P. capsici and defence phytohormones (DP) also modified NR enzymatic activity (nitrite:NAD(+) oxidoreductase; EC 1.7.1.1) with similar kinetics. Because the application of DP induced and activated the CcNR differentially, it is possible that the activity of CcNR is related to a specific host defence response.


Subject(s)
Capsicum/microbiology , Nitrate Reductase/metabolism , Phytophthora/pathogenicity , Plant Growth Regulators/metabolism , Acetates/pharmacology , Capsicum/drug effects , Capsicum/enzymology , Capsicum/genetics , Cyclopentanes/pharmacology , Enzyme Activation , Gene Expression Regulation, Plant , Genes, Plant , Nitrate Reductase/analysis , Nitrate Reductase/genetics , Organophosphorus Compounds/pharmacology , Oxylipins/pharmacology , Plant Diseases/microbiology , Plant Immunity , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/analysis , Plant Proteins/metabolism , RNA, Plant/genetics , RNA, Plant/isolation & purification , Salicylic Acid/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...