Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Biosensors (Basel) ; 13(8)2023 Aug 21.
Article En | MEDLINE | ID: mdl-37622918

Microfluidics has emerged as a versatile technology that is applied to enhance the performance of analytical techniques, among others. Pursuing this, we present a capillary-driven microfluidic device that improves the sensitivity of lateral flow immunoassay rapid tests thanks to offering an automated washing step. A novel multilevel microfluidic chip was 3D-printed with a photocurable black resin, sealed by an optically clear pressure-sensitive adhesive, and linked to the lateral flow strip. To depict the efficacy of microfluidics and the washing step, cortisol was measured quantitatively within the proposed device. Measuring cortisol levels is a way to capture physiological stress responses. Among biofluids, saliva is less infectious and easier to sample than others. However, higher sensitivity is demanded because the salivary cortisol concentrations are much lower than in blood. We carried out a competitive lateral flow immunoassay protocol with the difference that the microfluidic device applies an automated washing step after the sample is drained downstream. It washes the trapped quantum-dot-labeled antibodies out from nitrocellulose, diminishing background noise as these are bonded to cortisols and not to the immobilized receptors. Fluorescence spectroscopy, as a high-precision analysis, was successfully applied to determine clinically relevant salivary cortisol concentrations within a buffer quantitatively. The microfluidic design relied on a 3D valve that avoids reagent cross-contamination. This cross-contamination could make the washing buffer impure and undesirably dilute the sample. The proposed device is cost-effective, self-powered, robust, and ideal for non-expert users.


Hydrocortisone , Microfluidics , Antibodies , Catheters , Immunoassay
2.
Adv Mater ; 35(36): e2211352, 2023 Sep.
Article En | MEDLINE | ID: mdl-37435994

The advent of immunotherapies with biological drugs has revolutionized the treatment of cancers and auto-immune diseases. However, in some patients, the production of anti-drug antibodies (ADAs) hampers the drug efficacy. The concentration of ADAs is typically in the range of 1-10 pm; hence their immunodetection is challenging. ADAs toward Infliximab (IFX), a drug used to treat rheumatoid arthritis and other auto-immune diseases, are focussed. An ambipolar electrolyte-gated transistor (EGT) immunosensor is reported based on a reduced graphene oxide (rGO) channel and IFX bound to the gate electrode as the specific probe. The rGO-EGTs are easy to fabricate and exhibit low voltage operations (≤ 0.3 V), a robust response within 15 min, and ultra-high sensitivity (10 am limit of detection). A multiparametric analysis of the whole rGO-EGT transfer curves based on the type-I generalized extreme value distribution is proposed. It is demonstrated that it allows to selectively quantify ADAs also in the co-presence of its antagonist tumor necrosis factor alpha (TNF-α), the natural circulating target of IFX.


Biosensing Techniques , Humans , Immunoassay , Antibodies , Infliximab , Electrolytes
3.
Microsyst Nanoeng ; 9: 91, 2023.
Article En | MEDLINE | ID: mdl-37469685

By manipulating the geometry and surface chemistry of microfluidic channels, capillary-driven microfluidics can move and stop fluids spontaneously without external instrumentation. Furthermore, complex microfluidic circuits can be preprogrammed by synchronizing the capillary pressures and encoding the surface tensions of microfluidic chips. A key component of these systems is the capillary valve. However, the main concern for these valves is the presence of unwanted diffusion during the valve loading and activation steps that can cause cross-contamination. In this study, we design and validate a novel diffusion-free capillary valve: the π-valve. This valve consists of a 3D structure and a void area. The void acts as a spacer between two fluids to avoid direct contact. When the valve is triggered, the air trapped within the void is displaced by pneumatic suction induced from the capillary flow downstream without introducing a gas bubble into the circuit. The proposed design eliminates diffusive mixing before valve activation. Numerical simulation is used to study the function and optimize the dimensions of the π-valve, and 3D printing is used to fabricate either the mould or the microfluidic chip. A comparison with a conventional valve (based on a constriction-expansion valve) demonstrates that the π-valve eliminates possible backflow into the valve and reduces the mixing and diffusion during the loading and trigger steps. As a proof-of-concept, this valve is successfully implemented in a capillary-driven circuit for the determination of benzodiazepine, achieving the successive release of 3 solutions in a 3D-printed microfluidic chip without external instrumentation. The results show a 40% increase in the fluorescence intensity using the π-valve relative to the conventional value. Overall, the π-valve prevents cross-contamination, minimizes sample use, and facilitates a sophisticated preprogrammed release of fluids, offering a promising tool for conducting automated immunoassays applicable at point-of-care testing.

4.
Analyst ; 148(12): 2657-2675, 2023 Jun 12.
Article En | MEDLINE | ID: mdl-37166188

Over decades, decentralized diagnostics continues to move towards rapid and cost-effective testing at the point-of-care (POC). Although microfluidics has become a key enabling technology for POC testing, the need for robust peripheral equipment has been a key limiting factor in reaching an ideal device. Manufacturing technologies are now reaching a level of maturity that allows the definition of 3D features down to the sub-millimeter scale. Employing three-dimensional (3D) features and surface chemistry allows the possibility to pre-program sophisticated control of the capillary flow avoiding bulky peripheral equipment. By designing a sequence of steps, like elution of reagents, washing, mixing, and sensing, capillary valves have become a powerful tool for POC applications. These valves use capillary force to stop and then release flows within pre-programmed capillary circuits without any moving part. Without their 3D structure, the feasibility of creating pre-programmed bioanalytical devices would be nearly impossible. Besides, the advent of smart materials and their variety of surface properties permitted the unprecedented ability to fabricate reliable flow control with a range of capillary driving forces. The classification of such capillary elements is presented in two functional steps - stop and actuation. This review includes the advances in 3D microfabrication, design, and surface chemistry for manufacturing bioanalytical devices. These developments are critically reviewed, focusing on the process and considering phenomena such as timing, reproducibility, unwanted diffusion, and cross-contaminations.


Microfluidics , Point-of-Care Systems , Reproducibility of Results , Equipment Design , Point-of-Care Testing
5.
J Chromatogr A ; 1665: 462795, 2022 Feb 22.
Article En | MEDLINE | ID: mdl-35042141

A fast determination of acidity constants (pKa) of very insoluble drugs has become a necessity in drug discovery process because it often produces molecules that are highly lipophilic and sparingly soluble in water. In this work the high throughput internal standard capillary electrophoresis (IS-CE) method has been adapted to the determination of pKa of water insoluble compounds by measurement in methanol/aqueous buffer mixtures. For this purpose, the reference pKa values for a set of 46 acid-base compounds of varied structure (internal standards) have been established in methanol-water mixtures at several solvent composition levels (with a maximum of 40% methanol). The IS-CE method has been successfully applied to seven test drugs of different chemical nature with intrinsic solubilities lower than 10-6 M. pKa values have been determined at different methanol/aqueous buffer compositions and afterwards Yasuda-Shedlovsky extrapolation method has been applied to obtain the aqueous pKa. The obtained results have successfully been compared to literature ones obtained by other methods. It is concluded that the IS-CE method allows the determination of aqueous pKa values using low proportions of methanol, becoming then more accurate in the extrapolation procedure than other reference methods.


Methanol , Pharmaceutical Preparations , Electrophoresis, Capillary , Hydrogen-Ion Concentration , Water
6.
Lab Chip ; 21(13): 2565-2573, 2021 06 29.
Article En | MEDLINE | ID: mdl-34002759

A rapid, low-cost, and disposable microfluidic thread-based isotachophoresis method was developed for the purification and preconcentration of nucleic acids from biological samples, prior to their extraction and successful analysis using quantitative polymerase chain reaction (qPCR). This approach extracts and concentrates protein-free DNA from the terminating electrolyte buffer, via a continuous sampling approach, resulting in significant focussing of the extracted DNA upon a 6 cm length nylon thread. The platform was optimised using the preconcentration of a fluorescent dye, showing a 600-fold concentration capacity within <5 min. The system was then applied to the one-step extraction of lambda DNA - an E. coli bacteriophage - spiked into whole blood, exhibiting the exclusion of PCR inhibitors. The extraction efficiency from the thread material following concentration was consistent, between 94.4-113.9%. The determination of lambda DNA in whole blood was achieved within a linear range of 1.0-1 × 105 fg µL-1 (20-2 × 106 copies per µL). This technique demonstrates great potential for the development of thread-based affordable analytical and diagnostic devices based upon DNA and RNA isolation.


Isotachophoresis , Nucleic Acids , DNA , Escherichia coli , Polymerase Chain Reaction
7.
Analyst ; 145(21): 6928-6936, 2020 Oct 26.
Article En | MEDLINE | ID: mdl-32844824

The combination of a thread-based electrofluidic analytical device and desorption electrospray ionization mass-spectrometry (DESI-MS) was investigated for the separation and concentration of proteins. The combination delivered a low-cost novel approach for sample pretreatment and target focusing, with direct "on-thread" ambient mass spectrometry detection. For this purpose, a platform for thread-based isoelectric focusing (TB-IEF) was 3D-printed, optimised, and applied to the separation and focusing of three model proteins. Successful separation and focusing was achieved within 30 min. The TB-IEF device was coupled with DESI-MS by direct exposure of the focused solutes on the dried thread to the DESI source. As a proof-of-concept, a 10-fold increase in the DESI-MS response for insulin was achieved following the TB-IEF preconcentration, whilst simultaneously isolating the target solutes from their sample matrix.

8.
Sci Rep ; 10(1): 7120, 2020 04 28.
Article En | MEDLINE | ID: mdl-32345999

The delivery of bioactive molecules (drugs) with control over spatial distribution remains a challenge. Herein, we demonstrate for the first time an electrofluidic approach to controlled delivery into soft tissue models based on gelatin methacryloyl (GelMA) hydrogels. This was achieved using a surgical suture, whereby transport of bioactive molecules, including drugs and proteins, was controlled by imposition of an electric field. Commonly employed surgical sutures or acrylic threads were integrated through the hydrogels to facilitate the directed introduction of bioactive species. The platform consisted of two reservoirs into which the ends of the thread were immersed. The anode and cathode were placed separately into each reservoir. The thread was taken from one reservoir to the other through the gel. When current was applied, biomolecules loaded onto the thread were directed into the gel. Under the same conditions, the rate of movement of the biomolecules along GelMA was dependent on the magnitude of the current. Using 5% GelMA and a current of 100 µA, 2 uL of fluorescein travelled through the hydrogel at a constant velocity of 7.17 ± 0.50 um/s and took less than 8 minutes to exit on the thread. Small molecules such as riboflavin migrated faster (5.99 ± 0.40 µm/s) than larger molecules such as dextran (2.26 ± 0.55 µm/s with 4 kDa) or BSA (0.33 ± 0.07 µm/s with 66.5 kDa). A number of commercial surgical sutures were tested and found to accommodate the controlled movement of biomolecules. Polyester, polyglactin 910, glycolide/lactide copolymer and polyglycolic acid braided sutures created adequate fluid connection between the electrodes and the hydrogel. With a view to application in skin inflammatory diseases and wound treatment, wound healing, slow and controlled delivery of dexamethasone 21-phosphate disodium salt (DSP), an anti-inflammatory prodrug, was achieved using medical surgicryl PGA absorbable suture. After 2 hours of electrical stimulation, still 81.1% of the drug loaded was encapsulated within the hydrogel.


Biocompatible Materials , Drug Delivery Systems , Electrochemistry/methods , Gelatin/chemistry , Hydrogels/chemistry , Methacrylates/chemistry , Models, Biological , Sutures , Tissue Scaffolds
9.
ACS Appl Mater Interfaces ; 11(4): 4353-4363, 2019 Jan 30.
Article En | MEDLINE | ID: mdl-30623658

A relative lack of printable materials with tailored functional properties limits the applicability of three-dimensional (3D) printing. In this work, a diamond-acrylonitrile butadiene styrene (ABS) composite filament for use in 3D printing was created through incorporation of high-pressure and high-temperature (HPHT) synthetic microdiamonds as a filler. Homogenously distributed diamond composite filaments, containing either 37.5 or 60 wt % microdiamonds, were formed through preblending the diamond powder with ABS, followed by subsequent multiple fiber extrusions. The thermal conductivity of the ABS base material increased from 0.17 to 0.94 W/(m·K), more than five-fold following incorporation of the microdiamonds. The elastic modulus for the 60 wt % microdiamond containing composite material increased by 41.9% with respect to pure ABS, from 1050 to 1490 MPa. The hydrophilicity also increased by 32%. A low-cost fused deposition modeling printer was customized to handle the highly abrasive composite filament by replacing the conventional (stainless-steel) filament feeding gear with a harder titanium gear. To demonstrate improved thermal performance of 3D printed devices using the new composite filament, a number of composite heat sinks were printed and characterized. Heat dissipation measurements demonstrated that 3D printed heat sinks containing 60 wt % diamond increased the thermal dissipation by 42%.

10.
Anal Chim Acta ; 1051: 41-48, 2019 Mar 21.
Article En | MEDLINE | ID: mdl-30661618

In this study, the separation of inorganic mono and divalent cations using multi-lumen silica capillaries (MLCs) of 126 channels, each with either 4 or 8 µm inner diameter, was investigated using capillary electrophoresis and on-capillary capacitively coupled contactless conductivity detection (CE-C4D). MLCs provided sufficiently high surface area-to-volume ratios to generate significant wall ion-exchange interactions for the divalent cations, which significantly affected resultant selectivity, whereas monovalent cations were predominantly separated by simple electrophoresis. The resultant hybrid selectivity was seen for both 4 and 8 µm channel multi-lumen capillaries, without any preconditioning or capillary wall modification. Remarkably, the electrophoretic mobilities for the divalent cations Mg2+ and Ca2+ were reduced 7.5 times compared to those determined using a single channel open tubular capillary of 50 µm i.d., providing much improved selectivity. Apparent electrophoretic mobilities of divalent cations increased as the concentration of BGE increased, while those of monovalent cations decreased parallel to electroosmotic mobility. These results show the electrostatic interaction between the divalent cations and the silica wall. At least, this specific separation of mono- and divalent cations were clearly observed with a mixture standards solution of less than 200 µmol L-1. Using a MLC with 126 × 8 µm i.d. channels and 49.1 cm in length, together with a 20 mmol L-1 MES/His BGE, containing 2 mmol L-1 18-crown-6, monovalent cations (NH4+, K+ Na+ and Li+) and divalent cations (Ca2+ and Mg2+) could be completely separated within 4 min. For monovalent cations, on-capillary detection using C4D provided calibration curve (0-200 µmol L-1) correlation coefficients in the range R2 = 0.995-0.999, and limits of detection of 2.2-6.6 µmol L-1. Relative standard deviations for migration times were less than 0.6%, and recoveries ranged from the 93.8%-105.4%. The new method was applied to the separation and quantitative determination of monovalent and divalent cations in drinking waters and soil extracts.


Cations, Divalent/analysis , Cations, Divalent/isolation & purification , Cations, Monovalent/analysis , Cations, Monovalent/isolation & purification , Electrophoresis, Capillary/methods , Drinking Water/chemistry , Soil/chemistry , Surface Properties
11.
ACS Comb Sci ; 21(4): 229-240, 2019 04 08.
Article En | MEDLINE | ID: mdl-30640423

Novel approaches that incorporate electrofluidic and microfluidic technologies are reviewed to illustrate the translation of traditional enclosed structures into open and accessible textile based platforms. Through the utilization of on-fiber and on-textile microfluidics, it is possible to invert the typical enclosed capillary column or microfluidic "chip" platform, to achieve surface accessible efficient separations and fluid handling, while maintaining a microfluidic environment. The open fiber/textile based fluidics approach immediately provides new possibilities to interrogate, manipulate, redirect, extract, characterize, and quantify solutes and target species at any point in time during such processes as on-fiber electrodriven separations. This approach is revolutionary in its simplicity and provides many potential advantages not otherwise afforded by the more traditional enclosed platforms.


Lab-On-A-Chip Devices , Microfluidics/instrumentation , Textiles , Electrochemical Techniques/instrumentation , Electrophoresis/instrumentation , Humans , Hydrophobic and Hydrophilic Interactions , Immunoassay/instrumentation , Organic Chemicals/chemistry , Photochemical Processes , Proteins , Surface Properties
12.
Electrophoresis ; 40(1): 17-39, 2019 01.
Article En | MEDLINE | ID: mdl-30362581

One of the most cited limitations of capillary and microchip electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of online/in-line concentration methods in capillaries and microchips, covering the period July 2016-June 2018. It includes developments in the field of stacking, covering all methods from field-amplified sample stacking and large-volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to online or in-line extraction methods that have been used for electrophoresis.


Electrophoresis, Capillary , Animals , Biomarkers/analysis , Cell Line , Chemical Fractionation , Humans , Hydrogen-Ion Concentration , Isotachophoresis , Mice , Micelles , Sensitivity and Specificity
13.
Anal Chim Acta ; 1000: 283-292, 2018 Feb 13.
Article En | MEDLINE | ID: mdl-29289321

The application of electrophoresis upon commercial threads is investigated for development of low-cost diagnostics assays, designed for the matrix separation and quantification of low abundance metabolites in complex samples - in this work riboflavin in human urine. Zone electrophoresis was evaluated upon 8 commercially available threads, with several synthetic threads exhibiting higher electroosmotic flow (EOF) and increased electrophoretic mobility of the rhodamine 6G, rhodamine B, and fluorescein. Of those tested, a nylon bundle was selected as the best platform, offering less band dispersion and higher resolution, a high relative EOF, whilst minimising the contribution of joule heating. A novel 3D printed platform was designed, based on a modular system, facilitating the electrophoresis process and rapid assembly, whilst offering the potential for multiplexed analysis or investigation of more complex systems. Using the thread-based electrophoresis system, riboflavin was determined in less than 2 min. The device exhibited a linear working range from 0.1 to 15 µg/mL of riboflavin in urine, and was in good agreement with capillary electrophoresis measurements.


Microfluidic Analytical Techniques , Riboflavin/urine , Electrophoresis, Capillary/instrumentation , Fluorescein , Humans , Microfluidic Analytical Techniques/instrumentation , Rhodamines/chemistry , Riboflavin/metabolism
14.
Sci Rep ; 7(1): 15109, 2017 11 08.
Article En | MEDLINE | ID: mdl-29118385

Synthetic micro-diamond-polydimethylsiloxane (PDMS) composite microfluidic chips and thin films were produced using indirect 3D printing and spin coating fabrication techniques. Microfluidic chips containing up to 60 wt% micro-diamond were successfully cast and bonded. Physicochemical properties, including the dispersion pattern, hydrophobicity, chemical structure, elasticity and thermal characteristics of both chip and films were investigated. Scanning electron microscopy indicated that the micro-diamond particles were embedded and interconnected within the bulk material of the cast microfluidic chip, whereas in the case of thin films their increased presence at the polymer surface resulted in a reduced hydrophobicity of the composite. The elastic modulus increased from 1.28 for a PDMS control, to 4.42 MPa for the 60 wt% composite, along with a three-fold increase in thermal conductivity, from 0.15 to 0.45 W m-1 K-1. Within the fluidic chips, micro-diamond incorporation enhanced heat dissipation by efficient transfer of heat from within the channels to the surrounding substrate. At a flow rate of 1000 µL/min, the gradient achieved for the 60 wt% composite chip equalled a 9.8 °C drop across a 3 cm long channel, more than twice that observed with the PDMS control chip.

15.
Anal Chem ; 89(17): 8808-8815, 2017 09 05.
Article En | MEDLINE | ID: mdl-28770992

A prerequisite for ordered two-dimensional (2D) separations and full utilization of the enhanced 2D peak capacity is selective exploitation of the sample attributes, described as sample dimensionality. In order to take sample dimensionality into account prior to optimization of a 2D separation, a new concept based on construction of 2D separation selectivity maps is proposed and demonstrated for ion chromatography × capillary electrophoresis (IC×CE) separation of low-molecular-mass organic acids as test analytes. For this purpose, 1D separation selectivity maps were constructed based on calculation of pairwise separation factors and identification of critical pairs for four IC stationary phases and 28 levels of background electrolyte pH in CE. The derived IC and CE maps were then superimposed and the effectiveness of the respective 2D separations assessed using an in silico approach, followed by testing examples of one successful and one unsuccessful 2D combination experimentally. The results confirmed the efficacy of the predictions, which require a minimal number of experiments compared to the traditional one-at-a-time approach. Following the same principles, the proposed framework can also be adapted for optimization of separation selectivity in various 2D combinations and for other applications.

16.
Anal Chem ; 89(12): 6513-6520, 2017 06 20.
Article En | MEDLINE | ID: mdl-28528550

A counter-pressure-assisted capillary isotachophoresis method in combination with a sieving matrix and ionic spacer was used to perform in-line fluorescence in situ hybridization (FISH) of bacterial cells. A high concentration of sieving matrix (1.8% w/v HEC) was introduced at one end of the capillary, and the bacterial cells were suspended in the spacer electrolyte for injection. Using a 2 min injection with 18 psi counter-pressure, 50% of the cells injected into the capillary were hybridized with the fluorescently labeled oligonucleotide, and the excess unhybridized probe was separated from the hybridized cell-probe complexes in a two-stage ITP method. With an LOD (6.0 × 104 cells/mL) comparable with the CE analysis of a sample processed using an off-line FISH protocol, the total analysis time was reduced from 2.5 h to 30 min. Provided the appropriate probe is selected, this approach can be used for specific detection of bacterial cells in aqueous samples.


Escherichia coli/cytology , In Situ Hybridization, Fluorescence , Isotachophoresis , Pseudomonas aeruginosa/cytology , Cells, Cultured , Electrolytes/chemistry
17.
Anal Chem ; 89(7): 3858-3866, 2017 04 04.
Article En | MEDLINE | ID: mdl-28281349

Three-dimensional (3D) printing has emerged as a potential revolutionary technology for the fabrication of microfluidic devices. A direct experimental comparison of the three 3D printing technologies dominating microfluidics was conducted using a Y-junction microfluidic device, the design of which was optimized for each printer: fused deposition molding (FDM), Polyjet, and digital light processing stereolithography (DLP-SLA). Printer performance was evaluated in terms of feature size, accuracy, and suitability for mass manufacturing; laminar flow was studied to assess their suitability for microfluidics. FDM was suitable for microfabrication with minimum features of 321 ± 5 µm, and rough surfaces of 10.97 µm. Microfluidic devices >500 µm, rapid mixing (71% ± 12% after 5 mm, 100 µL/min) was observed, indicating a strength in fabricating micromixers. Polyjet fabricated channels with a minimum size of 205 ± 13 µm, and a surface roughness of 0.99 µm. Compared with FDM, mixing decreased (27% ± 10%), but Polyjet printing is more suited for microfluidic applications where flow splitting is not required, such as cell culture or droplet generators. DLP-SLA fabricated a minimum channel size of 154 ± 10 µm, and 94 ± 7 µm for positive structures such as soft lithography templates, with a roughness of 0.35 µm. These results, in addition to low mixing (8% ± 1%), showed suitability for microfabrication, and microfluidic applications requiring precise control of flow. Through further discussion of the capabilities (and limitations) of these printers, we intend to provide guidance toward the selection of the 3D printing technology most suitable for specific microfluidic applications.

18.
Electrophoresis ; 38(1): 33-59, 2017 01.
Article En | MEDLINE | ID: mdl-27678139

One of the most cited limitations of capillary (and microchip) electrophoresis is the poor sensitivity. This review continues to update this series of biennial reviews, first published in Electrophoresis in 2007, on developments in the field of on-line/in-line concentration methods in capillaries and microchips, covering the period July 2014-June 2016. It includes developments in the field of stacking, covering all methods from field amplified sample stacking and large volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.


Electrophoresis, Capillary/methods , Isotachophoresis/methods , Microchip Analytical Procedures/methods , Capillary Electrochromatography , Cell Line , Humans , Inorganic Chemicals/analysis , Isoelectric Focusing , Nanostructures/analysis , Organic Chemicals/analysis , Sensitivity and Specificity
19.
Analyst ; 141(23): 6422-6431, 2016 Nov 14.
Article En | MEDLINE | ID: mdl-27786314

A novel and effective fibre-based microfluidic methodology was developed to move and isolate charged solutes, biomolecules, and intact bacterial cells, based upon a novel multi-functional 3D printed supporting platform, with potential applications in the fields of microfluidics and biodiagnostics. Various on-fibre electrophoretic techniques are demonstrated to separate, pre-concentrate, move, split, or cut and collect the isolated zones of target solutes, including proteins and live bacterial cells. The use of knotting to link different fibre materials, and the unique ability of this approach to physically concentrate solutes in different locations are shown such that the concentrated solutes can be physically isolated and easily transferred to other fibres. Application of this novel fibre-based technique within a potential diagnostic platform for urinary tract infection is shown, together with the post-electrophoretic incubation of live bacterial cells, demonstrating the cell survival following on-fibre electrophoretic concentration.


Electrophoresis , Escherichia coli/cytology , Microfluidic Analytical Techniques , Printing, Three-Dimensional , Cell Survival , Humans , Urine/microbiology
20.
Lab Chip ; 16(11): 1993-2013, 2016 05 24.
Article En | MEDLINE | ID: mdl-27146365

3D printing has the potential to significantly change the field of microfluidics. The ability to fabricate a complete microfluidic device in a single step from a computer model has obvious attractions, but it is the ability to create truly three dimensional structures that will provide new microfluidic capability that is challenging, if not impossible to make with existing approaches. This critical review covers the current state of 3D printing for microfluidics, focusing on the four most frequently used printing approaches: inkjet (i3DP), stereolithography (SLA), two photon polymerisation (2PP) and extrusion printing (focusing on fused deposition modeling). It discusses current achievements and limitations, and opportunities for advancement to reach 3D printing's full potential.

...