Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Theory Comput ; 14(9): 4884-4900, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30040902

ABSTRACT

A selection of several aromatic molecules, representative of the important class of heterocyclic compounds, has been considered for testing and validating an automated Force Field (FF) parametrization protocol, based only on Quantum Mechanical data. The parametrization is carried out separately for the intra- and intermolecular contributions, employing respectively the Joyce and Picky software packages, previously implemented and refined in our research group. The whole approach is here automated and integrated with a computationally effective yet accurate method, devised very recently ( J. Chem. THEORY: Comput., 2018, 14, 543-556) to evaluate a large number of dimer interaction energies. The resulting quantum mechanically derived FFs are then used in extensive molecular dynamics simulations, in order to evaluate a number of thermodynamic, structural, and dynamic properties of the heterocycle's gas and liquid phases. The comparison with the available experimental data is good and furnishes a validation of the presented approach, which can be confidently exploited for the design of novel and more complex materials.

2.
J Chem Theory Comput ; 14(2): 543-556, 2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29300481

ABSTRACT

Noncovalent interactions between homodimers of several aromatic heterocycles (pyrrole, furan, thiophene, pyridine, pyridazine, pyrimidine, and pyrazine) are investigated at the ab initio level, employing the Möller-Plesset second-order perturbation theory, coupled with small Gaussian basis sets (6-31G* and 6-31G**) with specifically tuned polarization exponents. The latter are modified using a systematic and automated procedure, the MP2mod approach, based on a comparison with high level CCSD(T) calculations extrapolated to a complete basis set. The MP2mod results achieved with the modified 6-31G** basis set show an excellent agreement with CCSD(T)/CBS reference energies, with a standard deviation less than 0.3 kcal/mol. Exploiting its low computational cost, the MP2mod approach is then used to explore sections of the intermolecular energy of the considered homodimers, with the aim of rationalizing the results. It is found that the direct electrostatic interaction between the monomers electron clouds is at the origin of some observed features, and in many cases multipoles higher than dipole play a relevant role, although often the interplay with other contributions to the noncovalent forces (as for instance induction, π-π or XH-π interactions) makes a simple rationalization rather difficult.

SELECTION OF CITATIONS
SEARCH DETAIL