Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 335: 118697, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39154669

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia divinorum (Epling and Játiva) is a psychoactive plant traditionally used by the Latinos for various medicinal purposes. Salvinorin A (Sal A), the main bioactive constituent of S. divinorum, is a natural highly selective kappa opioid receptor (KOR) agonist. Considering the anti-inflammatory effect of S. divinorum and endogenous hippocampal dynorphin/kappa opioid receptor (KOR) system playing an anticonvulsant function, we hypothesis that Sal A can be a potential candidate to treat epilepsy. Here, we identified whether Sal A ameliorated epileptic seizures and neuronal damages in animal model and in vitro model and investigated its underlying mechanisms. MATERIALS AND METHODS: Mice epilepsy model was induced by pilocarpine following seizures assessed by Racine classification. Hippocampus tissues were obtained for genetic, protein, and histological investigation. Furthermore, lipopolysaccharide (LPS)-activated BV2 microglial cells were utilized to validate the anti-inflammatory and microglia polarization regulation effects of Sal A. RESULTS: Sal A treatment significantly prolonged the latency to status epileptics (SE) and shortened the duration of SE in the pilocarpine-induced model. It also alleviated neuronal damages via activation of the AMPK/JNK/p-38 MAPK pathway and inhibition of apoptosis-related protein in hippocampus tissues. Furthermore, Sal A dose-dependently reduced microglia-mediated expression of pro-inflammatory cytokines and increased anti-inflammatory factors levels in SE mice and LPS-activated BV2 microglial cells by regulating microglia polarization. In addition, the effect of Sal A in vitro was totally blocked by KOR antagonist nor-BNI. CONCLUSION: Sal A treatment protects against epileptic seizures and neuronal damages in pilocarpine-induced models by suppressing the inflammation response through regulating microglial M1/M2 polarization. This study might serve as a theoretical basis for clinical applications of Sal A and its analogs and provide a new insight into the development of anti-seizure drugs.

2.
Acta Physiol (Oxf) ; 236(3): e13882, 2022 11.
Article in English | MEDLINE | ID: mdl-36039689

ABSTRACT

AIM: Endogenous dynorphin signaling via kappa opioid receptors (KORs) plays a key role in producing the depressive and aversive consequences of stress. We investigated the behavioral effects of the dynorphin/KOR system in the ventral pallidum (VP) and studied the underlying mechanisms. METHODS: To investigate the effects of dynorphin on the VP, we conducted behavioral experiments after microinjection of drugs or shRNA and brain-slice electrophysiological recordings. Histological tracing and molecular biological experiments were used to identify the distribution of KORs and the possible sources of dynorphin projections to the VP. RESULTS: An elevated dynorphin concentration and increased KOR activity were observed in the VP after acute stress. Infusion of dynorphin-A into the VP produced depressive-like phenotypes including anhedonia and despair and anxiety behaviors, but did not alter locomotor behavior. Mechanistically, dynorphin had an inhibitory effect on VP neurons-reducing their firing rate and inhibiting excitatory transmission-through direct activation of KORs and modulation of downstream G-protein-gated inwardly rectifying potassium (GIRK) channels and high-voltage gated calcium channels (VGCCs). Tracing revealed direct innervation of VP neurons by dynorphin-positive projections; potential sources of these dynorphinergic projections include the nucleus accumbens, amygdala, and hypothalamus. Blockade of dynorphin/KOR signaling in the VP by drugs or viral knock-down of KORs significantly reduced despair behavior in rats. CONCLUSIONS: Endogenous dynorphinergic modulation of the VP plays a critical role in mediating depressive reactions to stress.


Subject(s)
Basal Forebrain , Dynorphins , Animals , Mice , Rats , Basal Forebrain/metabolism , Calcium Channels , Dynorphins/genetics , Dynorphins/metabolism , Dynorphins/pharmacology , Mice, Inbred C57BL , Neurons/metabolism , Potassium/pharmacology , Receptors, Opioid, kappa/genetics , Receptors, Opioid, kappa/metabolism , RNA, Small Interfering , Depression , Behavior, Animal , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL