Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 87(2): 02A741, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26931959

ABSTRACT

Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

2.
Rev Sci Instrum ; 85(9): 096109, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25273795

ABSTRACT

The Versatile Ion Source (VIS) is a microwave discharge ion source installed at INFN-LNS and here used as test-bench for the production of high intensity low emittance proton beams and for studies on plasma physics. A series of measurements have been carried out with VIS in order to test the source with light ions. In particular a He(+) beam has been characterized in terms of plasma discharge parameters. The experiment has been triggered by the observation of X-radiation emission from the plasma for some configuration of the magnetic field profile. The plasma electron energy distribution function is in fact modified when in some regions of the plasma chamber under-resonance discharge takes place, fulfilling the condition that allows the electromagnetic wave to electrostatic wave conversion. These tests allowed obtaining more than 50 mA of He(+) beams.

3.
Rev Sci Instrum ; 85(2): 02A956, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593535

ABSTRACT

An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source - operating at GSI, Darmstadt - has been carried out. Two different detectors (a SDD - Silicon Drift Detector and a HpGe - hyper-pure Germanium detector) have been used to characterize the warm (2-30 keV) and hot (30-500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

4.
Toxicol Appl Pharmacol ; 265(3): 368-72, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-22982620

ABSTRACT

Ethanolic extract of Casearia sylvestris is thought to be antimutagenic. In this study, we attempted to determine whether this extract and casearin X (a clerodane diterpene from C. sylvestris) are protective against the harmful effects of airborne pollutants from sugarcane burning. To that end, we used the Tradescantia micronucleus test in meiotic pollen cells of Tradescantia pallida, the micronucleus test in mouse bone marrow cells, and the comet assay in mouse blood cells. The mutagenic compound was total suspended particulate (TSP) from air. For the Tradescantia micronucleus test, T. pallida cuttings were treated with the extract at 0.13, 0.25, or 0.50 mg/ml. Subsequently, TSP was added at 0.3mg/ml, and tetrads from the inflorescences were examined for micronuclei. For the micronucleus test in mouse bone marrow cells and the comet assay in mouse blood cells, Balb/c mice were treated for 15 days with the extract-3.9, 7.5, or 15.0 mg/kg body weight (BW)-or with casearin X-0.3, 0.25, or 1.2 mg/kg BW-after which they received TSP (3.75 mg/kg BW). In T. pallida and mouse bone marrow cells, the extract was antimutagenic at all concentrations tested. In mouse blood cells, the extract was antigenotoxic at all concentrations, whereas casearin X was not antimutagenic but was antigenotoxic at all concentrations. We conclude that C. sylvestris ethanolic extract and casearin X protect DNA from damage induced by airborne pollutants from sugarcane burning.


Subject(s)
Anticarcinogenic Agents/pharmacology , Casearia/chemistry , DNA Damage , Diterpenes, Clerodane/pharmacology , Particulate Matter/toxicity , Plant Extracts/pharmacology , Saccharum/chemistry , Air Pollutants/toxicity , Animals , Bone Marrow/drug effects , Bone Marrow/metabolism , Brazil , Comet Assay , Male , Mice , Mice, Inbred BALB C , Micronucleus Tests , Plant Leaves/chemistry , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL