Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell Proteomics ; 22(2): 100496, 2023 02.
Article in English | MEDLINE | ID: mdl-36640924

ABSTRACT

Transcriptional enhanced associate domain family members 1 to 4 (TEADs) are a family of four transcription factors and the major transcriptional effectors of the Hippo pathway. In order to activate transcription, TEADs rely on interactions with other proteins, such as the transcriptional effectors Yes-associated protein and transcriptional co-activator with PDZ-binding motif. Nuclear protein interactions involving TEADs influence the transcriptional regulation of genes involved in cell growth, tissue homeostasis, and tumorigenesis. Clearly, protein interactions for TEADs are functionally important, but the full repertoire of TEAD interaction partners remains unknown. Here, we employed an affinity purification mass spectrometry approach to identify nuclear interacting partners of TEADs. We performed affinity purification mass spectrometry experiment in parallel in two different cell types and compared a wildtype TEAD bait protein to a nuclear localization sequence mutant that does not localize to the nucleus. We quantified the results using SAINT analysis and found a significant enrichment of proteins linked to DNA damage including X-ray repair cross-complementing protein 5 (XRCC5), X-ray repair cross-complementing protein 6 (XRCC6), poly(ADP-ribose) polymerase 1 (PARP1), and Rap1-interacting factor 1 (RIF1). In cellular assays, we found that TEADs co-localize with DNA damage-induced nuclear foci marked by histone H2AX phosphorylated on S139 (γH2AX) and Rap1-interacting factor 1. We also found that depletion of TEAD proteins makes cells more susceptible to DNA damage by various agents and that depletion of TEADs promotes genomic instability. Additionally, depleting TEADs dampens the efficiency of DNA double-stranded break repair in reporter assays. Our results connect TEADs to DNA damage response processes, positioning DNA damage as an important avenue for further research of TEAD proteins.


Subject(s)
DNA Damage , DNA Repair , TEA Domain Transcription Factors , Humans , Carcinogenesis/metabolism , DNA Repair/physiology , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , TEA Domain Transcription Factors/metabolism
2.
Trends Cancer ; 5(5): 297-307, 2019 05.
Article in English | MEDLINE | ID: mdl-31174842

ABSTRACT

The Hippo pathway remains a central focus in both basic and translational research and is a key modulator of developmental biology. Dysregulation of the pathway is associated with a plethora of human cancers and there are multiple efforts to target key components of the pathway for disease intervention. In this review, we briefly highlight the latest research advances around the core components of the Hippo pathway in cancer. More specifically, we discuss several genetic aberrations of these factors as mechanisms for the development of cancers, including genetic amplification, deletion, and gene fusions. Additionally, we highlight the role of the Hippo pathway in cancer therapy resistance and tumor immunogenicity. Last, we summarize the ongoing efforts to target the pathway in cancers.


Subject(s)
Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Drug Discovery , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , Humans , Neoplasms/etiology , Neoplasms/pathology , Neoplasms/therapy , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects
3.
Pigment Cell Melanoma Res ; 32(2): 269-279, 2019 03.
Article in English | MEDLINE | ID: mdl-30156010

ABSTRACT

The deubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with a high risk of mesothelioma and melanocytic tumors. Here, we show that Bap1 deletion in melanocytes cooperates with the constitutively active, oncogenic form of BRAF (BRAFV600E ) and UV to cause melanoma in mice, albeit at very low frequency. In addition, Bap1-null melanoma cells derived from mouse tumors are more aggressive and colonize and grow at distant sites more than their wild-type counterparts. Molecularly, Bap1-null melanoma cell lines have increased DNA damage measured by γH2aX and hyperubiquitination of histone H2a. Therapeutically, these Bap1-null tumors are completely responsive to BRAF- and MEK-targeted therapies. Therefore, BAP1 functions as a tumor suppressor and limits tumor progression in melanoma.


Subject(s)
Carcinogenesis/genetics , Carcinogenesis/pathology , Melanoma/genetics , Melanoma/pathology , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , DNA Damage , Epithelial-Mesenchymal Transition/genetics , Gene Deletion , Gene Expression Regulation, Neoplastic , Histones/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Melanocytes/metabolism , Melanocytes/pathology , Mice, Inbred C57BL , Mice, Knockout , Transcription, Genetic , Ubiquitination , Melanoma, Cutaneous Malignant
4.
Cell Rep ; 19(1): 162-174, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28380355

ABSTRACT

Ultraviolet (UV) radiation is a carcinogen that generates DNA lesions. Here, we demonstrate an unexpected role for DGCR8, an RNA binding protein that canonically functions with Drosha to mediate microRNA processing, in the repair of UV-induced DNA lesions. Treatment with UV induced phosphorylation on serine 153 (S153) of DGCR8 in both human and murine cells. S153 phosphorylation was critical for cellular resistance to UV, the removal of UV-induced DNA lesions, and the recovery of RNA synthesis after UV exposure but not for microRNA expression. The RNA-binding and Drosha-binding activities of DGCR8 were not critical for UV resistance. DGCR8 depletion was epistatic to defects in XPA, CSA, and CSB for UV sensitivity. DGCR8 physically interacted with CSB and RNA polymerase II. JNKs were involved in the UV-induced S153 phosphorylation. These findings suggest that UV-induced S153 phosphorylation mediates transcription-coupled nucleotide excision repair of UV-induced DNA lesions in a manner independent of microRNA processing.


Subject(s)
DNA Damage , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Ribonuclease III/metabolism , Animals , Anisomycin/metabolism , Anthracenes/metabolism , DNA/metabolism , DNA/radiation effects , DNA Repair , HCT116 Cells , HeLa Cells , Humans , MAP Kinase Kinase 4/antagonists & inhibitors , MAP Kinase Kinase 4/metabolism , Mice , Phosphorylation , RNA Polymerase II/metabolism , RNA-Binding Proteins/genetics , Ribonuclease III/genetics , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL