Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
Add more filters










Publication year range
1.
ACS Macro Lett ; : 853-858, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917088

ABSTRACT

Random difunctionalization of dendrimer surfaces, frequently employed in biological applications, provides the advantage of dual functional groups through a synthetic pathway that is simpler compared to precise difunctionalization. However, is the random difunctionalization as efficient as the precise difunctionalization on the surface of dendrimers? This question is unanswered to date because most dendrimer families face challenges in achieving precise functionalization. Polyphosphorhydrazone (PPH) dendrimers present a unique opportunity to obtain precise difunctionalization at each terminal branching point. The work concerning catalysis we report with PPH dendrimers, whether precisely or randomly functionalized, addresses this question. Across PPH dendrimers, from generations 1 to 3, precise functionalization consistently outperforms random functionalization in terms of efficiency. This finding introduces a novel concept in dendrimer science, emphasizing the superiority of precise over random functionalization methodologies. Introducing a groundbreaking concept in the field of dendrimers.

2.
Dalton Trans ; 53(21): 9120-9129, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38738979

ABSTRACT

The field of supported catalysis has experienced increased attention with respect to the development of novel architectures for immobilizing catalytic species, aiming to maintain or enhance their activity while facilitating the easy recovery and reuse of the active moiety. Dendrimers have been identified as promising candidates capable of imparting such properties to catalysts through selective functionalization. The present study details the synthesis of two polyphosphorhydrazone (PPH) dendrons, each incorporating azide or acetylene groups at the core for subsequent coupling through "click" triazole chemistry. Employing this methodology, a novel PPH Janus dendrimer was successfully synthesized, featuring ten polyethylene glycol (PEG) chains on one side of the structure and ten Ru(p-cymene) derivatives on the other. This design was intended to confer dual properties, influencing solubility modulation, and allowing the presence of active catalytic moieties. The synthesized dendrimer underwent testing in the isomerization of allyl alcohols in organic solvents and biphasic solvent mixtures. The results demonstrated a positive dendritic effect compared with model monometallic and bimetallic species, providing a proof-of-concept for the first PPH Janus dendrimer with tested applications in catalysis.

3.
Molecules ; 29(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675623

ABSTRACT

Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more efficient than platinum complexes with negligible side effects has attracted much interest. Among the other metals that have been examined for potential applications as anticancer agents is copper. The interest in copper was recently boosted by the discovery of cuproptosis, a recently evidenced form of cell death mediated by copper. However, copper is also known to induce the proliferation of cancer cells. In view of these contradictory results, there is a need to find the most suitable copper chelators, among which Schiff-based derivatives offer a wide range of possibilities. Gathering several metal complexes in a single, larger entity may provide enhanced properties. Among the nanometric objects suitable for such purpose are dendrimers, precisely engineered hyperbranched macromolecules, which are outstanding candidates for improving therapy and diagnosis. In this review article, we present an overview of the use of a particular Schiff base, namely pyridine-imine, linked to the surface of dendrimers, suitable for complexing copper, and the use of such dendrimer complexes in biology, in particular against cancers.


Subject(s)
Copper , Imines , Pyridines , Animals , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chelating Agents/chemistry , Chelating Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Dendrimers/chemistry , Imines/chemistry , Neoplasms/drug therapy , Pyridines/chemistry , Schiff Bases/chemistry
4.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542106

ABSTRACT

This review describes the two-photon absorption properties of dendrimers, which are arborescent three-dimensional macromolecules differing from polymers by their perfectly defined structure. The two-photon absorption process is a third order non-linear optical property that is attractive because it can be used in a wide range of applications. In this review, dendrimers that were studied for their two-photon absorption properties are first described. Then, the use of dendritic TPA chromophores for light harvesting, photopolymerization, optical power limitation, cell imaging, singlet oxygen generation, and photodynamic therapy is described. This review thus proposes an overview of the properties and possible applications of two-photon absorbing dendrimers.


Subject(s)
Dendrimers , Photochemotherapy , Dendrimers/chemistry , Photosensitizing Agents/chemistry , Photochemotherapy/methods , Photons , Polymers/chemistry
5.
Chemistry ; 30(13): e202400456, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38372387

ABSTRACT

Invited for the cover of this issue are the groups and colleagues of Anne-Marie Caminade at the CNRS and University of Toulouse, Evamarie Hey-Hawkins at Leipzig University, and Agustí Lledós from the Autonomous University of Barcelona. The image depicts birds crowned by a carborane competing for access to food, to illustrate the steric hindrance encountered when grafting carboranes to dendrimers (artwork by Dr. Christoph Selg). Read the full text of the article at 10.1002/chem.202303867.

6.
Biomacromolecules ; 25(2): 1171-1179, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38181417

ABSTRACT

The development of nonviral dendritic polymers with a simple molecular backbone and great gene delivery efficiency to effectively tackle cancer remains a great challenge. Phosphorus dendrimers or dendrons are promising vectors due to their structural uniformity, rigid molecular backbones, and tunable surface functionalities. Here, we report the development of a new low-generation unsymmetrical cationic phosphorus dendrimer bearing 5 pyrrolidinium groups and one amino group as a nonviral gene delivery vector. The created AB5-type dendrimers with simple molecular backbone can compress microRNA-30d (miR-30d) to form polyplexes with desired hydrodynamic sizes and surface potentials and can effectively transfect miR-30d to cancer cells to suppress the glycolysis-associated SLC2A1 and HK1 expression, thus significantly inhibiting the migration and invasion of a murine breast cancer cell line in vitro and the corresponding subcutaneous tumor mouse model in vivo. Such unsymmetrical low-generation phosphorus dendrimers may be extended to deliver other genetic materials to tackle other diseases.


Subject(s)
Dendrimers , MicroRNAs , Neoplasms , Animals , Mice , Dendrimers/chemistry , Genetic Vectors , MicroRNAs/genetics , Gene Transfer Techniques , Cations , Phosphorus
7.
Chemistry ; 30(13): e202303867, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38214467

ABSTRACT

Several ortho-carboranes bearing a phenoxy or a phenylamino group in the B9 position were prepared employing various protection and deprotection strategies. Following established protocols, dendritic compounds were synthesized from a hexachlorocyclotriphosphazene or thiophosphoryl chloride core, and possible anchoring options for the B9-substituted ortho-carboranes were investigated experimentally and theoretically (DFT). Furthermore, 1- or 1,2-phosphanyl-substituted carborane derivatives were obtained. The resulting diethyl-, diisopropyl-, di-tert-butyl-, diphenyl- or diethoxyphosphines bearing a tunable ortho-carborane moiety are intriguing ligands for future applications in homogeneous catalysis or the medicinal sector.

8.
Pharmaceutics ; 15(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37631334

ABSTRACT

The presence of a large number of boron atoms in boron clusters make them attractive tools for the treatment of cancer using boron neutron capture therapy (BNCT). Since the quantity of boron atoms present in the target cell directly affects the effectiveness of BNCT, the idea of gathering a high number of boron atoms in a single entity has emerged many years ago. In this perspective, using hyper-branched macromolecules such as dendrimers appears as an interesting solution. In this review, we will first present the synthesis of diverse dendritic entities (dendrimers, dendrons, and Janus dendrimers) that incorporate boron clusters, in particular carboranes, anywhere in their structure. Four parts of this review present the synthesis of dendrimers having boron clusters on the surface, or inside their structure, of dendrons and of Janus dendrimers, bearing boron clusters. Practically all these boronated dendritic structures were synthesized with the objective to study their biological properties, but in fact only a few of them have been tested against cancerous cells, and even a smaller number was tested in BNCT experiments. The biological experiments are discussed in the fifth part of this review. A good efficiency is generally observed with the boronated dendrimers, even in animal models, with an increase in their mean survival time (MST).

9.
Chemistry ; 29(66): e202302198, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37650869

ABSTRACT

Two families of phosphorhydrazone dendrons having either an azide or an alkyne linked to the core and diverse types of pyridine derivatives as terminal functions have been synthesized and characterized. These dendrons were grafted via click reaction to graphene oxide (GO) functionalized with either alkyne or azide functions, respectively. The resulting modified-GO and GO-dendrons materials have been characterized by Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), and Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) analyses. In addition, the free dendrons and the dendrons grafted to GO were tested toward cancerous (HCT116) and non-cancerous (RPE1) cell lines.

10.
Molecules ; 28(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570709

ABSTRACT

This review presents the state of the art of interactions between two different families of nanoobjects: nanoparticles-mainly metal nanoparticles, and dendrimers-mainly phosphorhydrazone dendrimers (or dendrons). The review firstly presents the encapsulation/protection of existing nanoparticles (organic or metallic) by phosphorus-based dendrimers and dendrons. In the second part, several methods for the synthesis of metal nanoparticles, thanks to the dendrimer that acts as a template, are presented. The properties of the associations between dendrimers and nanoparticles are emphasized throughout the review. These properties mainly concern the elaboration of diverse types of hybrid materials, some of them being used as sensitive chemosensors or biosensors. Several examples concerning catalysis are also given, displaying in particular the efficient recovery and reuse of the catalytic entities.

11.
Molecules ; 28(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37513445

ABSTRACT

Dendrimers, being highly branched monodispersed macromolecules, predominantly exhibit identical terminal functionalities within their structural framework. Nonetheless, there are instances where the presence of two distinct surface functionalities becomes advantageous for the fulfilment of specific properties. To achieve this objective, one approach involves implementing Janus dendrimers, consisting of two dendrimeric wedges terminated by dissimilar functionalities. The prevalent method for creating these structures involves the synthesis of dendrons that possess a core functionality that complements that of a second dendron, facilitating their coupling to generate the desired dendrimers. In this comprehensive review, various techniques employed in the fabrication of phosphorus-based Janus dendrimers are elucidated, displaying the different coupling methodologies employed between the two units. The advantages of phosphorus dendrimers over classic dendrimers will be shown, as the presence of at least one phosphorus atom in each generation allows for the easy monitoring of reactions and the confirmation of purity through a simple technique such as 31P NMR, as these structures typically exhibit easily interpretable patterns.

12.
Chempluschem ; 88(4): e202300064, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36942796

ABSTRACT

The Staudinger reaction between a phosphine and an azide, applied to phosphorus azides, has been used for the synthesis of a large variety of dendritic structures, incorporating P=N-P=X moieties (X = mainly S, but also O and N-R). Conjugation of the P=N bond with the P=X bond greatly stabilizes the P=N bond. Highly branched structures such as dendrons, dendrimers, Janus dendrimers, layered dendrimers, surface-block dendrimers, and diverse other dendritic structures incorporating such linkage have been elaborated. Accelerated methods of synthesis of dendrimers are also based on the Staudinger reaction. A versatile reactivity was observed exclusively on the sulfur atom of P=N-P=S linkages, such as alkylation or complexation. Alkylation on S induces a weakening of the strength of the P=S bond, which can be easily cleaved to generate phosphines able to react in Staudinger reactions inside the structure of dendrimers, thus affording highly sophisticated dendritic structures.

13.
J Pers Med ; 13(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36983641

ABSTRACT

This Special Issue, "Personalized and Precision Medicine 2022" (https://www [...].

14.
J Mater Chem B ; 11(24): 5483-5493, 2023 06 21.
Article in English | MEDLINE | ID: mdl-36444746

ABSTRACT

Combined chemo/gene therapy of cancer through different action mechanisms has been emerging to enhance the therapeutic efficacy towards cancer, and still remains a challenging task due to the lack of highly effective and biocompatible nanocarriers. In this work, we report a new nanosystem based on amphiphilic phosphorus dendron (1-C12G1) micelles to co-deliver microRNA-21 inhibitor (miR-21i) and doxorubicin (DOX) for combination therapy of triple negative breast cancer. The amphiphilic phosphorus dendron bearing a long linear alkyl chain and ten protonated pyrrolidine surface groups was prepared and was demonstrated to form micelles in water solution and have a hydrodynamic size of 103.2 nm. The micelles are shown to be stable, enable encapsulation of an anticancer drug DOX with optimal loading content (80%) and encapsulation efficiency (98%), and can compress miR-21i to form polyplexes to render it with good stability against degradation. The co-delivery system of 1-C12G1@DOX/miR-21i polyplexes has a pH-dependent DOX release profile, and can be readily phagocytosed by cancer cells to inhibit them due to the different anticancer mechanisms, which was further validated after intravenous injection to treat an orthotopic triple-negative breast tumor model in vivo. With the proven biocompatibility under the studied doses, the developed amphiphilic phosphorus dendron micelles could be developed as an effective nanomedicine formulation for synergistic cancer therapy.


Subject(s)
Dendrimers , MicroRNAs , Triple Negative Breast Neoplasms , Humans , Micelles , Dendrimers/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Doxorubicin
15.
Molecules ; 27(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36500305

ABSTRACT

The structure of phosphorus-containing dendrimers has been studied by IR spectroscopy and optical polarization microscopy. The repeating units of dendrimer molecules are mesogens. This property arises from the conjugation of the aromatic ring and the hydrazone group. An analysis of the IR spectra showed that, with an increase in the generation number, the width of the stretching vibration bands ν(PN) and ν(PO) increases. Difficulties in packing molecules of higher generations cause conformational diversity. The shape of the dendrimer molecules was determined by analyzing the increments of dipole moments. Additionally, the modeling of the stacking of repeating links was performed. The spherical model of molecules does not satisfy the experimental dipole moments of the dendrimers. The flat disk model is more suitable for explaining step changes in dipole moments. The liquid-crystalline ordering of dendrimers under the action of applied pressure was found. With simultaneous heating and uniaxial compression, optical anisotropy appears in dendrimers. It is associated with the formation of liquid-crystalline order. However, a thermodynamically stable liquid-crystalline phase is not formed in this case. Dendrimers most likely have disk-shaped molecules.


Subject(s)
Dendrimers , Liquid Crystals , Phosphorus/chemistry , Dendrimers/chemistry , Liquid Crystals/chemistry , Molecular Conformation , Spectrophotometry, Infrared
16.
J Pers Med ; 12(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36013283

ABSTRACT

Dendrimers are highly branched macromolecules tailorable at will to fulfil precise requirements. They have generated a great many expectations and a huge number of publications and patents in relation to medicine, including in relation to personalized medicine, but have resulted in very poor clinical translation up to now. As clinical trials are the first steps in view of developing new compounds for (a personalized) medicine, this review focusses on the clinical trials carried out with dendrimers. Many of these clinical trials have been recently posted (2020-2022); thus, only very few concern phase 3. The safety and efficiency of essentially two main types of dendrimers, based on polylysine and polyamidoamide scaffolds, have been assessed up to now. These dendrimers were tested with the aim of treating mainly bacterial vaginosis, cancers, and COVID-19.

17.
Biomacromolecules ; 23(7): 2827-2837, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35694854

ABSTRACT

Conventional small molecular chemical drugs always have challenging limitations in cancer therapy due to their high systemic toxicity and low therapeutic efficacy. Nanotechnology has been applied in drug delivery, bringing new promising potential to realize effective cancer treatment. In this context, we develop here a new nanomicellar drug delivery platform generated by amphiphilic phosphorus dendrons (1-C17G3.HCl), which could form micelles for effective encapsulation of a hydrophobic anticancer drug doxorubicin (DOX) with a high drug loading content (42.4%) and encapsulation efficiency (96.7%). Owing to the unique dendritic rigid structure and surface hydrophilic groups, large steady void space of micelles can be created for drug encapsulation. The created DOX-loaded micelles with a mean diameter of 26.3 nm have good colloidal stability. Strikingly, we show that the drug-free micelles possess good intrinsic anticancer activity and act collectively with DOX to take down breast cancer cells in vitro and the xenografted tumor model in vivo through upregulation of Bax, PTEN, and p53 proteins for enhanced cell apoptosis. Meanwhile, the resulting 1-C17G3.HCl@DOX micelles significantly abolish the toxicity relevant to the free drug. The findings of this study demonstrate a unique nanomicelle-based drug delivery system created with the self-assembling amphiphilic phosphorus dendrons that may be adapted for chemotherapy of different cancer types.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Dendrimers , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Dendrimers/chemistry , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Female , Humans , Micelles , Phosphorus
18.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35628503

ABSTRACT

Tumor cells with stem cell properties are considered to play major roles in promoting the development and malignant behavior of aggressive cancers. Therapeutic strategies that efficiently eradicate such tumor stem cells are of highest clinical need. Herein, we performed the validation of the polycationic phosphorus dendrimer-based approach for small interfering RNAs delivery in in vitro stem-like cells as models. As a therapeutic target, we chose Lyn, a member of the Src family kinases as an example of a prominent enzyme class widely discussed as a potent anti-cancer intervention point. Our selection is guided by our discovery that Lyn mRNA expression level in glioma, a class of brain tumors, possesses significant negative clinical predictive value, promoting its potential as a therapeutic target for future molecular-targeted treatments. We then showed that anti-Lyn siRNA, delivered into Lyn-expressing glioma cell model reduces the cell viability, a fact that was not observed in a cell model that lacks Lyn-expression. Furthermore, we have found that the dendrimer itself influences various parameters of the cells such as the expression of surface markers PD-L1, TIM-3 and CD47, targets for immune recognition and other biological processes suggested to be regulating glioblastoma cell invasion. Our findings prove the potential of dendrimer-based platforms for therapeutic applications, which might help to eradicate the population of cancer cells with augmented chemotherapy resistance. Moreover, the results further promote our functional stem cell technology as suitable component in early stage drug development.


Subject(s)
Brain Neoplasms , Dendrimers , Glioblastoma , Glioma , Brain Neoplasms/metabolism , Dendrimers/metabolism , Dendrimers/pharmacology , Glioblastoma/metabolism , Glioma/metabolism , Humans , Neoplastic Stem Cells/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
19.
Article in English | MEDLINE | ID: mdl-35194953

ABSTRACT

Different types of water-soluble phosphorous dendrimers have been synthesized and display many different biological properties. It has been shown in particular that phosphorous dendrimers of first generation functionalized with azabisphosphonate terminal functions are able to stimulate the human immune system ex vivo. These dendrimers are internalized by monocytes within a few seconds, and induce their anti-inflammatory activation. The presence of the dendrimers induces also the inhibition of the differentiation of monocytes into osteoclasts, the maturation of dendritic cells, and inhibits the proliferation of the proinflammatory CD4+ T lymphocytes. Finally, after 2-3 weeks of culture of peripheral blood mononuclear cells, amplifications by several tens of natural killer cells is observed. In view of all these properties, the influence of these azabisphosphonate-dendrimers has been tested in vivo with several animal models, against different chronic or acute inflammatory diseases, such as multiple sclerosis, rheumatoid arthritis, uveitis, and psoriasis, but also against myeloid leukemia, a hematological cancer. The hematological safety has been demonstrated in mice, as there is no platelet aggregation, no hemolysis, and no disturbance in the hematological formula. The safety of the azabisphosphonate-dendrimer has been assessed also with non-human primates (cynomolgus monkeys) which received repeated injections, as a de-risking pre-clinical test. Biochemical, hematological, and all immunological parameters in peripheral blood remained within a normal physiological range throughout the study, and all survived well. Other phosphorous dendrimers also display anti-inflammatory properties in vivo, in particular dendrimers functionalized with mannose derivatives, which prevent acute lung diseases when given orally (per os) to mice. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.


Subject(s)
Dendrimers , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Leukocytes, Mononuclear , Mice , Monocytes , Phosphorus
20.
Pharmaceutics ; 14(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35214126

ABSTRACT

Dendritic molecules bearing metal complexes in their structure (metallodendrimers and metallodendrons) are considered prospective therapeutic entities. In particular, metallodendrons raise interest as antitumor agents for the treatment of poorly curable or drug-resistant tumors. Herein, we have synthesized amphiphilic triazine-phosphorus dendrons bearing multiple copper (II) or gold (III) complexes on the periphery and a branched hydrophobic fragment at the focal point. Due to their amphiphilic nature, metallodendrons formed single micelles (mean diameter ~9 nm) or multi-micellar aggregates (mean diameter ~60 nm) in a water solution. We have tested the antitumor activity of amphiphilic metallodendrons towards glioblastoma, a malignant brain tumor with a notoriously high level of therapy resistance, as a model disease. The metallodendrons exhibit higher cytotoxic activity towards glioblastoma stem cells (BTSC233, JHH520, NCH644, and SF188 cell lines) and U87 glioblastoma cells (IC50 was 3-6 µM for copper-containing dendron and 11-15 µM for gold-containing dendron) in comparison with temozolomide (IC50 >100 µM)-the clinical standard of care for glioblastoma. Our findings show the potential of metallodendron-based nanoformulations as antitumor entities.

SELECTION OF CITATIONS
SEARCH DETAIL
...