Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 229: 113078, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34929502

ABSTRACT

Leptodictyum riparium, a widely distributed aquatic moss, can both tolerate and accumulate very high concentrations of toxic heavy metals, with only slight apparent damage. Here we report the effects on photosynthetic yield, glutathione (GSH), phytochelatin (PCn) synthesis, nitrogen metabolism and cellular localization of molecules rich in SH groups in L. riparium exposed in vitro to heavy metals. We simulated the concentrations of Cu, Zn, Cd, Pb detected in Regi Lagni, Italy, one of the most contaminated freshwater sites in Southern Europe, in the laboratory to test how the moss responds to heavy metal contamination. There was a steady decrease of photosynthetic efficiency correlated with the heavy metal concentrations and ultrastructural organization. All PCn levels increased significantly as the concentration of heavy metals increased, while the GSH levels did not appear to be particularly affected. A significant increase of GDH and NADH-GOGAT activities increased with increasing heavy metal concentration. Immunoblotting analysis revealed an increase of the chl-GS2 while no significant increase was detected in the cyt-GS1. These results give insight into the molecular events underlying the metal-tolerance of the aquatic moss L. riparium exposed to environmental heavy metal concentrations.


Subject(s)
Bryophyta , Bryopsida , Metals, Heavy , Environmental Monitoring , Fresh Water , Glutathione , Metals, Heavy/analysis , Metals, Heavy/toxicity
2.
Plant Physiol Biochem ; 169: 190-202, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34801973

ABSTRACT

Low temperatures (0-10 °C) represent a major physiological stress for plants, negatively affecting both their growth rates and overall growth. Cold stress may induce a wide range of negative physiological effects, from oxidative stress to photosynthetic damage. We investigated the effects of low temperatures in two different model plants, Arabidopsis thaliana and Hordeum vulgare. We tested whether the oxidative pentose phosphate pathway (OPPP) is involved in the increase of reductants' levels needed to counteract oxidative stress induced by cold. The expression, occurrence, and activity of different glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) isoforms during cold stress and plant recovery from low temperatures, were measured at different growth stages from early germinated to mature pot-grown plants. Our results showed plants exhibited changes in different stress markers; ascorbate peroxidase - APX, catalase - CAT, proline, malondialdehyde, H2O2, NADPH/NADP+. We found that a major role in cold acclimation for cytosolic- and peroxisome-located G6PDHs, and different roles for plastidial/chloroplastic isoforms. This suggests that G6PDH isoforms may regulate redox homeostasis in low temperatures, in order to support the increased and continued demand of reductants during both cold stress and recovery stages. Furthermore, we found a significant involvement of (6PGDH), strengthening the idea that the contribution of the whole oxidative pentose phosphate pathway (OPPP) is required to sustain reductant supply under cold stress.


Subject(s)
Arabidopsis , Hordeum , Acclimatization , Cold-Shock Response , Glucosephosphate Dehydrogenase , Protein Isoforms
3.
Int J Mol Sci ; 20(22)2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31752217

ABSTRACT

Nitrogen (N) availability represents one of the most critical factors affecting cultivated crops. N is indeed a crucial macronutrient influencing major aspects, from plant development to productivity and final yield of lignocellulosic biomass, as well as content of bioactive molecules. N metabolism is fundamental as it is at the crossroad between primary and secondary metabolic pathways: Besides affecting the synthesis of fundamental macromolecules, such as nucleic acids and proteins, N is needed for other types of molecules intervening in the response to exogenous stresses, e.g. alkaloids and glucosinolates. By partaking in the synthesis of phenylalanine, N also directly impacts a central plant metabolic 'hub'-the phenylpropanoid pathway-from which important classes of molecules are formed, notably monolignols, flavonoids and other types of polyphenols. In this review, an updated analysis is provided on the impact that N has on the multipurpose crop hemp (Cannabis sativa L.) due to its renewed interest as a multipurpose crop able to satisfy the needs of a bioeconomy. The hemp stalk provides both woody and cellulosic fibers used in construction and for biocomposites; different organs (leaves/flowers/roots) are sources of added-value secondary metabolites, namely cannabinoids, terpenes, flavonoids, and lignanamides. We survey the available literature data on the impact of N in hemp and highlight the importance of studying those genes responding to both N nutrition and abiotic stresses. Available hemp transcriptomic datasets obtained on plants subjected to salt and drought are here analyzed using Gene Ontology (GO) categories related to N metabolism. The ultimate goal is to shed light on interesting candidate genes that can be further studied in hemp varieties growing under different N feeding conditions and showing high biomass yield and secondary metabolite production, even under salinity and drought.


Subject(s)
Cannabis/growth & development , Nitrogen/pharmacology , Cannabinoids/metabolism , Cannabis/drug effects , Cannabis/metabolism , Flavonoids/metabolism , Lignin/metabolism , Polyphenols/metabolism , Secondary Metabolism
4.
Plants (Basel) ; 8(8)2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31357401

ABSTRACT

In this work, the involvement of heat shock proteins (HSP70) in barley (Hordeum vulgare) has been studied in response to drought and salinity. Thus, 3 barley genotypes usually cultivated and/or selected in Italy, 3 Middle East/North Africa landraces and genotypes and 1 improved genotype from ICARDA have been studied to identify those varieties showing the best stress response. Preliminarily, a bioinformatic characterization of the HSP70s protein family in barley has been made by using annotated Arabidopsis protein sequences. This study identified 20 putative HSP70s orthologs in the barley genome. The construction of un-rooted phylogenetic trees showed the partition into four main branches, and multiple subcellular localizations. The enhanced HSP70s presence upon salt and drought stress was investigated by both immunoblotting and expression analyses. It is worth noting the Northern Africa landraces showed peculiar tolerance behavior versus drought and salt stresses. The drought and salinity conditions indicated the involvement of specific HSP70s to counteract abiotic stress. Particularly, the expression of cytosolic MLOC_67581, mitochondrial MLOC_50972, and encoding for HSP70 isoforms showed different expressions and occurrence upon stress. Therefore, genotypes originated in the semi-arid area of the Mediterranean area can represent an important genetic source for the improvement of commonly cultivated high-yielding varieties.

SELECTION OF CITATIONS
SEARCH DETAIL