Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Eur Heart J ; 45(17): 1553-1567, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38486376

ABSTRACT

BACKGROUND AND AIMS: The ecto-nucleoside triphosphate diphosphohydrolases of the CD39 family degrade ATP and ADP into AMP, which is converted into adenosine by the extracellular CD73/ecto-5-nucleotidase. This pathway has been explored in antithrombotic treatments but little in myocardial protection. We have investigated whether the administration of solCD39L3 (AZD3366) confers additional cardioprotection to that of ticagrelor alone in a pre-clinical model of myocardial infarction (MI). METHODS: Ticagrelor-treated pigs underwent balloon-induced MI (90 min) and, before reperfusion, received intravenously either vehicle, 1 mg/kg AZD3366 or 3 mg/kg AZD3366. All animals received ticagrelor twice daily for 42 days. A non-treated MI group was run as a control. Serial cardiac magnetic resonance (baseline, Day 3 and Day 42 post-MI), light transmittance aggregometry, bleeding time, and histological and molecular analyses were performed. RESULTS: Ticagrelor reduced oedema formation and infarct size at Day 3 post-MI vs. controls. A 3 mg/kg AZD3366 provided an additional 45% reduction in oedema and infarct size compared with ticagrelor and a 70% reduction vs. controls (P < .05). At Day 42, infarct size declined in all ticagrelor-administered pigs, particularly in 3 mg/kg AZD3366-treated pigs (P < .05). Left ventricular ejection fraction was diminished at Day 3 in placebo pigs and worsened at Day 42, whereas it remained unaltered in ticagrelor ± AZD3366-administered animals. Pigs administered with 3 mg/kg AZD3366 displayed higher left ventricular ejection fraction upon dobutamine stress at Day 3 and minimal dysfunctional segmental contraction at Day 42 (χ2P < .05 vs. all). Cardiac and systemic molecular readouts supported these benefits. Interestingly, AZD3366 abolished ADP-induced light transmittance aggregometry without affecting bleeding time. CONCLUSIONS: Infusion of AZD3366 on top of ticagrelor leads to enhanced cardioprotection compared with ticagrelor alone.


Subject(s)
Adenosine Triphosphatases , Apyrase , Myocardial Infarction , Ticagrelor , Animals , Humans , Male , Adenosine/analogs & derivatives , Adenosine/pharmacology , Antigens, CD , Apyrase/metabolism , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Disease Models, Animal , Myocardial Infarction/drug therapy , Platelet Aggregation/drug effects , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Swine , Ticagrelor/pharmacology , Ticagrelor/therapeutic use , Adenosine Triphosphatases/pharmacology , Adenosine Triphosphatases/therapeutic use
2.
Eur J Clin Invest ; 53(1): e13860, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35986736

ABSTRACT

OBJECTIVES: We performed a comprehensive assessment of the effect of myocardial ischemia duration on cardiac structural and functional parameters by serial cardiac magnetic resonance (CMR) and characterized the evolving scar. BACKGROUND: CMR follow-up on the cardiac impact of time of ischemia in a closed-chest animal model of myocardial infarction with human resemblance is missing. METHODS: Pigs underwent MI induction by occlusion of the left anterior descending (LAD) coronary artery for 30, 60, 90 or 120 min and then revascularized. Serial CMR was performed on day 3 and day 42 post-MI. CMR measurements were also run in a sham-operated group. Cellular and molecular changes were investigated. RESULTS: On day 3, cardiac damage and function were similar in sham and pigs subjected to 30 min of ischemia. Cardiac damage (oedema and necrosis) significantly increased from 60 min onwards. Microvascular obstruction was extensively seen in animals with ≥90 min of ischemia and correlated with cardiac damage. A drop in global systolic function and wall motion of the jeopardized segments was seen in pigs subjected to ≥60 min of ischemia. On day 42, scar size and cardiac dysfunction followed the same pattern in the animals subjected to ≥60 min of ischemia. Adverse left ventricular remodelling (worsening of both LV volumes) was only present in animals subjected to 120 min of ischemia. Cardiac fibrosis, myocyte hypertrophy and vessel rarefaction were similar in the infarcted myocardium of pigs subjected to ≥60 min of ischemia. No changes were observed in the remote myocardium. CONCLUSION: Sixty-minute LAD coronary occlusion already induces cardiac structural and functional alterations with longer ischemic time (120 min) causing adverse LV remodelling.


Subject(s)
Coronary Artery Disease , Coronary Occlusion , Myocardial Infarction , Humans , Animals , Swine , Myocardium , Heart , Myocardial Infarction/diagnostic imaging , Magnetic Resonance Imaging/methods , Models, Animal , Coronary Occlusion/diagnostic imaging , Disease Models, Animal , Ventricular Function, Left
3.
Sci Rep ; 12(1): 20698, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450745

ABSTRACT

Non-absorbable polypropylene (PP) meshes have been widely used in surgical reconstruction of the pelvic floor disorders. However, they are associated with serious complications. Human acellular dermal matrices (hADM) have demonstrated safety and efficacy in reconstructive medicine, but their suitability and efficacy at vaginal level is not known. This study compares the biological performance of PP mesh and a newly developed hADM. 20 rabbits were randomized to receive the hADM graft or the PP mesh. Grafts were surgically implanted in the abdominal wall and vagina. After 180 days, grafts were explanted and evaluated. The vaginal mesh extrusion rate was higher in the PP group (33% vs. 0%, p = 0.015). Full integration of the vaginal grafts was more frequent in the hADM group, where 35% of the grafts were difficult to recognize. In the PP group, the vaginal mesh was identified in 100% of the animals (p = 0.014). In PP group, the infiltrates had a focal distribution and were mostly located in the internal part of the epithelium, while in the hADM group, the infiltrates had a diffuse distribution. Additionally, the hADM group also presented more B-lymphocytes and less T-lymphocytes. Biomechanical analysis showed that hADM had lower resistance to stress. Moreover, PP mesh stiffness and elasticity were higher. Then, hADM is associated with fewer clinical complications, as well as better tissue integration. However, it shows greater incorporation into the surrounding native tissue, especially in the vaginal location, undergoing a reduction in its biomechanical properties 6 months after implantation.


Subject(s)
Acellular Dermis , Lagomorpha , Plastic Surgery Procedures , Animals , Female , Rabbits , Humans , Polypropylenes , Pelvic Floor/surgery , Surgical Mesh/adverse effects
4.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35955730

ABSTRACT

High-density lipoproteins (HDL) undergo adverse remodeling and loss of function in the presence of comorbidities. We assessed the potential of lipid-lowering approaches (diet and rosuvastatin) to rescue hypercholesterolemia-induced HDL dysfunction. Hypercholesterolemia was induced in 32 pigs for 10 days. Then, they randomly received one of the 30-day interventions: (I) hypercholesterolemic (HC) diet; (II) HC diet + rosuvastatin; (III) normocholesterolemic (NC) diet; (IV) NC diet + rosuvastatin. We determined cholesterol efflux capacity (CEC), antioxidant potential, HDL particle number, HDL apolipoprotein content, LDL oxidation, and lipid levels. Hypercholesterolemia time-dependently impaired HDL function (−62% CEC, −11% antioxidant index (AOI); p < 0.01), increased HDL particles numbers 2.8-fold (p < 0.0001), reduced HDL-bound APOM (−23%; p < 0.0001), and increased LDL oxidation 1.7-fold (p < 0.0001). These parameters remained unchanged in animals on HC diet alone up to day 40, while AOI deteriorated up to day 25 (−30%). The switch to NC diet reversed HDL dysfunction, restored apolipoprotein M content and particle numbers, and normalized cholesterol levels at day 40. Rosuvastatin improved HDL, AOI, and apolipoprotein M content. Apolipoprotein A-I and apolipoprotein C-III remained unchanged. Lowering LDL-C levels with a low-fat diet rescues HDL CEC and antioxidant potential, while the addition of rosuvastatin enhances HDL antioxidant capacity in a pig model of hypercholesterolemia. Both strategies restore HDL-bound apolipoprotein M content.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apolipoproteins M , Cholesterol/therapeutic use , Cholesterol, HDL , Diet , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypercholesterolemia/drug therapy , Hypercholesterolemia/etiology , Lipoproteins, HDL/therapeutic use , Lipoproteins, LDL , Models, Animal , Rosuvastatin Calcium/pharmacology , Rosuvastatin Calcium/therapeutic use , Swine
5.
Front Pharmacol ; 13: 891801, 2022.
Article in English | MEDLINE | ID: mdl-35592428

ABSTRACT

Background and Aims: Myocardial infarction (MI) is the clinical manifestation of atherosclerotic coronary artery disease. Spirulina is an algae known to ameliorate cardiometabolic disorders and with proven anti-inflammatory and anti-oxidant effects. We investigated, in a highly translatable animal model, whether oral supplementation with spirulina protects against the deleterious effects triggered by ST-elevation MI (STEMI). Methods: Pigs were fed a regular diet supplemented with spirulina (1 g/animal/bid) or placebo-control for 10 days. Thereafter, animals were subjected to 1.5 h percutaneous balloon-induced coronary occlusion (STEMI) followed by 2.5 h reperfusion and then sacrificed. We assessed infarct size and cardiac function. Blood samples and infarcted and remote myocardial tissue were obtained. Results: Spirulina supplementation reduced infarct size by 64%, increased myocardial salvage by 18%, and improved cardiac function by 30% vs. controls (p < 0.05). These benefits were associated with attenuation in DNA-oxidative damage and apoptotic markers and increased iNOS in the infarcted myocardium, higher AMPK activation in the remote myocardium, and lower myocardial MCP-1 expression. Systemically, spirulina attenuated Cox-2 expression in STEMI-activated peripheral blood mononuclear cells and enhanced TNF-α release acutely post-STEMI. Additionally, spirulina decreased weight gain progression over time (p < 0.05) without changes in lipids, glucose, liver or kidney parameters. Conclusion: A 10-day supplementation with spirulina exerts cardioprotection in a preclinical setting of STEMI by limiting cardiac damage and improving ventricular contractility through anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms.

6.
FASEB J ; 36(5): e22291, 2022 05.
Article in English | MEDLINE | ID: mdl-35344222

ABSTRACT

The clearance of low-density lipoprotein (LDL) particles from the circulation is regulated by the LDL receptor (LDLR) and proprotein convertase subtilisin/kexin 9 (PCSK9) interaction. Its disruption reduces blood cholesterol levels and delays atherosclerosis progression. Whether other members of the LDLR superfamily are in vivo targets of PCSK9 has been poorly explored. The aim of this work was to study the interaction between PCSK9 and members of the LDLR superfamily in the regulation of liver cholesterol homeostasis in an in vivo low-density lipoprotein receptor related protein 5 (LRP5) deficient mice model challenged with high-fat diet. Our results show that Wt and Lrp5-/- mice fed a hypercholesterolemic diet (HC) have increased cholesterol ester accumulation and decreased liver LDLR and LRP5 gene and protein expression. Very low-density lipoprotein receptor (VLDLR), LRP6, LRP2, and LRP1 expression levels were analyzed in liver samples and show that they do not participate in Lrp5-/- liver cholesterol uptake. Immunoprecipitation experiments show that LRP5 forms a complex with PCSK9 in liver-specific fat-storing stellate cells but not in structural HepG2 cells. Hepatic stellate cells silenced for LRP5 and/or PCSK9 expression and challenged with lipids show reduced cholesterol ester accumulation, indicating that both proteins are involved in lipid processing in the liver. Our results indicate that cholesterol esters accumulate in livers of Wt mice in a LDLR-family-members dependent manner as VLDLR, LRP2, and LRP6 show increased expression in HC mice. However, this increase is lost in livers of Lrp5-/- mice, where scavenger receptors are involved in cholesterol uptake. PCSK9 expression is strongly downregulated in mice livers after HC feeding. However PCSK9 and LRP5 bind in the cytoplasm of fat storing liver cells, indicating that this PCSK9-LRP5 interaction is cell-type specific and that both proteins contribute to lipid uptake.


Subject(s)
Cholesterol Esters , Liver , Proprotein Convertase 9 , Animals , Cholesterol Esters/metabolism , Hep G2 Cells , Humans , Lipoproteins, LDL/metabolism , Liver/metabolism , Mice , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Receptors, LDL/metabolism , Serine Endopeptidases/metabolism
7.
Sci Rep ; 11(1): 10545, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006889

ABSTRACT

The aims of this study were to evaluate the feasibility of the New Zealand White (NZW) rabbit for studying implanted biomaterials in pelvic reconstructive surgery; and to compare the occurrence of graft-related complications of a commercial polypropylene (PP) mesh and new developed human dermal matrix implanted at vaginal and abdominal level. 20 white female NZW rabbits were randomized into two groups, experimental group (human acellular dermal matrices-hADM-graft) and control group (commercial PP graft). In each animal, grafts were surgically implanted subcutaneously in the abdominal wall and in the vaginal submucosa layer for 180 days. The graft segments were then removed and the surgical and clinical results were analyzed. The main surgical challenges during graft implantation were: (a) an adequate vaginal exposure while maintaining the integrity of the vaginal mucosa layer; (b) to keep aseptic conditions; (c) to locate and dissect the breast vein abdominal surgery; and (d) to withdraw blood samples from the ear artery. The most abnormal findings during the explant surgery were found in the PP group (33% of vaginal mesh extrusion) in comparison with the hADM group (0% of vaginal graft extrusion), p = 0.015. Interestingly, macroscopic observation showed that the integration of the vaginal grafts was more common in the hADM group (40%) than in the PP group, in which the vaginal mesh was identified in 100% of the animals (p = 0.014). The NZW rabbit is a good model for assessing materials to be used as grafts for pelvic reconstructive surgery and vaginal surgery. Animals are easily managed during the procedures, including surgical intervention and vaginal mucosa approach. Additionally, hADM is associated with fewer clinical complications, as well as better macroscopic tissue integration, compared to PP mesh.


Subject(s)
Pelvic Floor/physiopathology , Pelvic Floor/surgery , Animals , Biocompatible Materials , Disease Models, Animal , Female , Rabbits
8.
Atherosclerosis ; 324: 91-101, 2021 05.
Article in English | MEDLINE | ID: mdl-33857761

ABSTRACT

BACKGROUND AND AIMS: Silybum marianum (SM) is an herbal product with cytoprotective and antioxidant properties. We have previously demonstrated that SM ameliorates ventricular remodeling and improves cardiac performance. Here, we evaluated whether SM could exert beneficial effects against cardiac lipotoxicity in a pig model of closed-chest myocardial infarction (MI). METHODS: Study 1 investigated the effect of SM administration on lipid profile and any potential SM-related adverse effects. Animals received SM or placebo during 10 days and were afterward sacrificed. Study 2 evaluated the effectiveness of SM daily administration in reducing cardiac lipotoxicity in animals subjected to a 1.5h myocardial infarction (MI), who were subsequently reperfused for 2.5h and euthanized or kept under study for three weeks and then sacrificed. RESULTS: Animals administered a 10-day SM regime presented a sharp decline in plasma triglyceride levels vs. controls, with no other modifications in lipid profile. The decrease in triglyceride concentration was accompanied by a marked reduction in triglyceride intestinal absorption and glycoprotein-P expression. Three weeks post-MI the triglyceride content in the ischemic myocardium of the SM-treated animals was significantly lower than in the ischemic myocardium of placebo-controls. This effect was associated with an enhanced cardiac expression of PPARγ and triglyceride clearance receptors. This long-term SM-administration induced a lower expression of lipid receptors in subcutaneous adipose tissue. No SM-related side-effects were registered. CONCLUSION: SM administration reduces plasma triglyceride levels through attenuation of triglyceride intestinal absorption and modulates cardiac lipotoxicity in the ischemic myocardium, likely contributing to improve ventricular remodeling.


Subject(s)
Myocardial Infarction , Silybum marianum , Animals , Antioxidants/pharmacology , Disease Models, Animal , Myocardial Infarction/drug therapy , Myocardium , Swine , Triglycerides , Ventricular Remodeling
9.
Arterioscler Thromb Vasc Biol ; 40(10): 2481-2493, 2020 10.
Article in English | MEDLINE | ID: mdl-32847390

ABSTRACT

OBJECTIVE: HDL (high-density lipoprotein) role in atherosclerosis is controversial. Clinical trials with CETP (cholesterylester transfer protein)-inhibitors have not provided benefit. We have shown that HDL remodeling in hypercholesterolemia reduces HDL cardioprotective potential. We aimed to assess whether hypercholesterolemia affects HDL-induced atherosclerotic plaque regression. Approach and Results: Atherosclerosis was induced in New Zealand White rabbits for 3-months by combining a high-fat-diet and double-balloon aortic denudation. Then, animals underwent magnetic resonance imaging (basal plaque) and randomized to receive 4 IV infusions (1 infusion/wk) of HDL isolated from normocholesterolemic (NC-HDL; 75 mg/kg; n=10), hypercholesterolemic (HC-HDL; 75 mg/Kg; n=10), or vehicle (n=10) rabbits. Then, animals underwent a second magnetic resonance imaging (end plaque). Blood, aorta, and liver samples were obtained for analyses. Follow-up magnetic resonance imaging revealed that NC-HDL administration regressed atherosclerotic lesions by 4.3%, whereas, conversely, the administration of HC-HDLs induced a further 6.5% progression (P<0.05 versus basal). Plaque characterization showed that HC-HDL administered animals had a 2-fold higher lipid and cholesterol content versus those infused NC-HDL and vehicle (P<0.05). No differences were observed among groups in CD31 levels, nor in infiltrated macrophages or smooth muscle cells. Plaques from HC-HDL administered animals exhibited higher Casp3 (caspase 3) content (P<0.05 versus vehicle and NC-HDL) whereas plaques from NC-HDL infused animals showed lower expression of Casp3, Cox1 (cyclooxygenase 1), inducible nitric oxide synthase, and MMP (metalloproteinase) activity (P<0.05 versus HC-HDL and vehicle). HDLs isolated from animals administered HC-HDL displayed lower antioxidant potential and cholesterol efflux capacity as compared with HDLs isolated from NC-HDL-infused animal and vehicle or donor HDL (P<0.05). There were no differences in HDL-ApoA1 content, ABCA1 (ATP-binding cassette transporter A1) vascular expression, and SRB1 (scavenger receptor B1) and ABCA1 liver expression. CONCLUSIONS: HDL particles isolated from a hypercholesterolemic milieu lose their ability to regress and stabilize atherosclerotic lesions. Our data suggest that HDL remodeling in patients with co-morbidities may lead to the loss of HDL atheroprotective functions.


Subject(s)
Anticholesteremic Agents/administration & dosage , Aorta, Abdominal/drug effects , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Cholesterol, HDL/administration & dosage , Hypercholesterolemia/drug therapy , Magnetic Resonance Imaging , Plaque, Atherosclerotic , Animals , Anticholesteremic Agents/toxicity , Aorta, Abdominal/diagnostic imaging , Aorta, Abdominal/metabolism , Aortic Diseases/blood , Aortic Diseases/diagnostic imaging , Aortic Diseases/etiology , Atherosclerosis/blood , Atherosclerosis/diagnostic imaging , Atherosclerosis/etiology , Biomarkers/blood , Cholesterol, HDL/blood , Cholesterol, HDL/toxicity , Disease Models, Animal , Disease Progression , Hypercholesterolemia/blood , Hypercholesterolemia/complications , Infusions, Intravenous , Male , Rabbits
10.
J Am Coll Cardiol ; 75(12): 1386-1402, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32216907

ABSTRACT

BACKGROUND: Beyond lipid-lowering, statins exert cardioprotective effects. High-dose statin treatment seems to reduce cardiovascular complications in high-risk patients. The ideal timing and administration regime remain unknown. OBJECTIVES: This study compared the cardioprotective effects of intravenous statin administration during myocardial infarction (MI) with oral administration immediately post-MI. METHODS: Hypercholesterolemic pigs underwent MI induction (90 min of ischemia) and were kept for 42 days. Animals were distributed in 3 arms (A): A1 received an intravenous bolus of atorvastatin during MI; A2 received an intravenous bolus of vehicle during MI; and A3 received oral atorvastatin within 2 h post-MI. A1 and A3 remained on daily oral atorvastatin for the following 42 days. Cardiac magnetic resonance analysis (days 3 and 42 post-MI) and molecular/histological studies were performed. RESULTS: At day 3, A1 showed a 10% reduction in infarct size compared with A3 and A2 and a 50% increase in myocardial salvage. At day 42, both A1 and A3 showed a significant decrease in scar size versus A2; however, A1 showed a further 24% reduction versus A3. Functional analyses revealed improved systolic performance in A1 compared with A2 and less wall motion abnormalities in the jeopardized myocardium versus both groups at day 42. A1 showed enhanced collagen content and AMP-activated protein kinase activation in the scar, increased vessel density in the penumbra, higher tumor necrosis factor α plasma levels and lower peripheral blood mononuclear cell activation versus both groups. CONCLUSIONS: Intravenous administration of atorvastatin during MI limits cardiac damage, improves cardiac function, and mitigates remodeling to a larger extent than when administered orally shortly after reperfusion. This therapeutic approach deserves to be investigated in ST-segment elevation MI patients.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/drug therapy , Administration, Intravenous , Administration, Oral , Animals , Drug Administration Schedule , Hydroxymethylglutaryl-CoA Reductase Inhibitors/blood , Hypercholesterolemia/blood , Hypercholesterolemia/diagnostic imaging , Hypercholesterolemia/drug therapy , Myocardial Infarction/blood , Random Allocation , Swine
11.
Nutrients ; 12(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31906276

ABSTRACT

A high fat diet (HFD) intake is crucial for the development and progression of metabolic syndrome (MtS). Increasing evidence links gut dysbiosis with the metabolic and vascular alterations associated with MtS. Here we studied the use of a combination of various probiotic strains together with a prebiotic (synbiotic) in a commercially available Prodefen® Plus. MtS was induced by HFD (45%) in male Wistar rats. Half of the MtS animals received Prodefen® Plus for 4 weeks. At 12 weeks, we observed an increase in body weight, together with the presence of insulin resistance, liver steatosis, hypertriglyceridemia and hypertension in MtS rats. Prodefen® Plus supplementation did not affect the body weight gain but ameliorated all the MtS-related symptoms. Moreover, the hypertension induced by HFD is caused by a diminished both nitric oxide (NO) functional role and release probably due to a diminished neuronal nitric oxide synthase (nNOS) activation by protein kinase A (PKA) pathway. Prodefen® Plus supplementation for 4 weeks recovered the NO function and release and the systolic blood pressure was returned to normotensive values as a result. Overall, supplementation with Prodefen® Plus could be considered an interesting non-pharmacological approach in MtS.


Subject(s)
Blood Vessels/physiopathology , Cyclic AMP-Dependent Protein Kinases/physiology , Metabolic Syndrome/enzymology , Nitric Oxide Synthase/physiology , Synbiotics/administration & dosage , Animals , Blood Pressure/physiology , Blood Vessels/enzymology , Body Weight , Diet, High-Fat , Dietary Supplements , Disease Models, Animal , Hypertension/enzymology , Hypertension/etiology , Hypertension/physiopathology , Insulin Resistance , Male , Metabolic Syndrome/etiology , Metabolic Syndrome/physiopathology , Probiotics/administration & dosage , Rats , Rats, Wistar
12.
Cardiovasc Res ; 116(7): 1288-1299, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31504272

ABSTRACT

AIMS: High-density lipoproteins (HDLs) are circulating micelles that transport proteins, lipids, and miRNAs. HDL-transported miRNAs (HDL-miRNAs) have lately received attention but their effects on vascular cells are not fully understood. Additionally, whether cardiovascular risk factors affect HDL-miRNAs levels and miRNA transfer to recipient cells remains equally poorly known. Here, we have investigated the changes induced by hypercholesterolaemia on HDL-miRNA levels and its effect on recipient endothelial cells (ECs). METHODS AND RESULTS: Pigs were kept on a high-fat diet (HC; n = 10) or a normocholesterolaemic chow (NC; n = 10) for 10 days reaching cholesterol levels of 321.0 (229.7-378.5) mg/dL and 74.0 (62.5-80.2) mg/dL, respectively. HDL particles were isolated, purified, and quantified. HDL-miRNA profiling (n = 149 miRNAs) of HC- and NC-HDLs was performed by multipanel qPCR. Cell cultures of porcine aortic ECs were used to determine whether HDL-miRNAs were delivered to ECs. Potential target genes modulated by miRNAs were identified by bioinformatics and candidate miRNAs were validated by molecular analysis. In vivo effects in the coronary arteries of normocholesterolaemic swine administered HC- or NC-HDLs were analysed. Among the HDL-miRNAs, four were found in different amounts in HC- and NC-HDL (P < 0.05). miR-126-5p and -3p and miR-30b-5p (2.7×, 1.7×, and 1.3×, respectively) were found in higher levels and miR-103a-3p and miR-let-7g-5p (-1.6×, -1.4×, respectively) in lower levels in HC-HDL. miR-126-5p and -3p were transferred from HC-HDL to EC (2.5×; P < 0.05), but not from NC-HDL, by a SRB1-mediated mechanism. Bioinformatics revealed that HIF1α was the miR-126 target gene with the highest predictive value, which was accordingly found to be markedly reduced in HC-HDL-treated ECs and in miR126 mimic transfected ECs. In vivo validation confirmed that HIF1α was diminished in the coronary endothelial layer of NC pigs administered HC-HDL vs. those administered NC-HDL (P < 0.05). CONCLUSION: Hypercholesterolaemia induces changes in the miRNA content of HDL enhancing miR126 and its delivery to ECs with the consequent down-regulation of its target gene HIF1α.


Subject(s)
Endothelial Cells/metabolism , Epigenesis, Genetic , Hypercholesterolemia/blood , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipoproteins, HDL/blood , MicroRNAs/blood , Animals , Cells, Cultured , Disease Models, Animal , Down-Regulation , Hypercholesterolemia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lipoproteins, HDL/genetics , MicroRNAs/genetics , Scavenger Receptors, Class B/metabolism , Sus scrofa
13.
Basic Res Cardiol ; 115(1): 2, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31781960

ABSTRACT

The success of therapies targeting myocardial reperfusion injury is limited, while the cardioprotective impact of mitigating ischemia-related damage remains less explored. We have recently shown in a pig model that the intravenous administration of a modified atorvastatin preparation during ischemia attenuates the rise of cardiac ischemia injury biomarkers. In the following study, we sought to investigate the mechanisms behind these ischemia-related cardioprotective effects. Ischemia was induced by 90 min total coronary balloon occlusion in pigs fed a normocholesterolemic regime. Fifteen minutes after the onset of ischemia, animals were randomized to receive intravenous atorvastatin preparation (IV-atorva) or vehicle. After ischemia animals were euthanized to assess the effect of IV-atorva treatment on gene and protein levels/activation of senescence-, apoptosis-, and cardioprotective/metabolic-related markers. Proof-of-concept studies were carried out in mice and rats in which treatments or vehicle were administered 15 min after initiation of ischemia induced by permanent coronary ligation. Western-blot analyses revealed that in the ischemic myocardium of IV-atorva-treated pigs, RhoA was inactivated, phosphorylation of p53 and caspase-3 was reduced and AMPK was activated with the consequent regulation of the mTOR/raptor-signaling pathway. IV-atorva-treated rats showed, as compared to vehicle, a significant reduction (60%) in scar size assessed at 1 month by histological staining, and mice studies demonstrated the causal involvement of AMPK activation in IV-atorva mediated cardioprotective effects. We demonstrate in pigs and rodents that prompt intravenous treatment with atorvastatin during ischemia limits cardiac cell death and reduces infarct size through AMPK signaling.


Subject(s)
Atorvastatin/pharmacology , Heart/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Myocardial Ischemia/drug therapy , AMP-Activated Protein Kinases/metabolism , Administration, Intravenous , Animals , Apoptosis/drug effects , Atorvastatin/therapeutic use , Cellular Senescence/drug effects , Drug Evaluation, Preclinical , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Male , Mice , Myocardial Ischemia/metabolism , Neutrophil Infiltration/drug effects , Random Allocation , Rats , Regulatory-Associated Protein of mTOR/metabolism , Simvastatin/pharmacology , Simvastatin/therapeutic use , Swine , TOR Serine-Threonine Kinases/metabolism , rhoA GTP-Binding Protein/metabolism
15.
PLoS One ; 14(6): e0218098, 2019.
Article in English | MEDLINE | ID: mdl-31220102

ABSTRACT

AIMS: Myocardial infarction induces myocardial injury and tissue damage. During myocardial infarction strong cellular response is initiated to salvage the damaged tissues. This response is associated with the induction of different signaling pathways. Of these, the canonical Wnt signaling is increasingly important for its prosurvival cellular role, making it a good candidate for the search of new molecular targets to develop therapies to prevent heart failure in infarcted patients. METHODS: Herein we report that GSK3ß regulates the canonical Wnt signaling in C57Bl6 mice hearts. GSK3ß is a canonical Wnt pathway inhibitor. Using GSK3ß inhibitors and inducing myocardial injury (MI) in Lrp5-/- mice model we show that GSK3ß phosphorylation levels regulate downstream canonical Wnt pathway genes in the ischemic heart. In the setting of MI, myocardial damage assessment usually correlates with functional and clinical outcomes. Therefore, we measured myocardial injury size in Wt and Lrp5-/- mice in the presence and absence of two different GSK3 inhibitors prior to MI. Myocardial injury was independent of GSK3 inhibitor treatments and GSK3ß expression levels. RESULTS: These studies support a central role for GSK3ß in the activation of the canonical Wnt pathway in the Wt heart. Although LRP5 is protective against myocardial injury, GSK3ß expression levels do not regulate heart damage.


Subject(s)
Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Myocardium/metabolism , Wnt Signaling Pathway , Animals , Gene Expression , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Ischemia/drug therapy , Myocardial Ischemia/enzymology , Myocardium/enzymology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Pyridines/therapeutic use , Pyrimidines/therapeutic use , Wnt Signaling Pathway/genetics
16.
Cardiovasc Res ; 114(14): 1860-1870, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30124783

ABSTRACT

Aims: P2Y12 antagonists are the standard in antiplatelet therapy but their potential effects on functional myocardial recovery and cardioprotection post-myocardial infarction (MI) are unknown. We investigated in a preclinical model of MI whether ticagrelor and clopidogrel differently affect cardiac repair post-MI. Methods and results: Pigs either received: (i) clopidogrel (600 mg; 75 mg/qd); (ii) ticagrelor (180 mg; 90 mg/bid); and (iii) placebo control. MI was induced by mid-left anterior descending coronary artery balloon occlusion (60 min) and animals received the maintenance doses for the following 42 days. Serial cardiac magnetic resonance was performed at Day 3 and Day 42 for the assessment of global and regional cardiac parameters. We determined cardiac AMP-activated protein kinase (AMPK), Akt/PKB, aquaporin-4, vascular density, and fibrosis. In comparison to controls, both P2Y12 antagonists limited infarct expansion at Day 3, although ticagrelor induced a further 5% reduction (P < 0.05 vs. clopidogrel) whereas oedema was only reduced by ticagrelor (≈23% P < 0.05). Scar size decreased at Day 42 in ticagrelor-treated pigs vs. controls but not in clopidogrel-treated pigs. Left ventricular ejection fraction was higher 3 days post-MI in ticagrelor-treated pigs and persisted up to Day 42 (P < 0.05 vs. post-MI). Regional analysis revealed that control and clopidogrel-treated pigs had severe and extensive wall motion abnormalities in the jeopardized myocardium and a reduced myocardial viability that was not as evident in ticagrelor-treated pigs (χ2P < 0.05 vs. ticagrelor). Only ticagrelor enhanced myocardial AMPK and Akt/PKB activation and reduced aquaporin-4 levels (P < 0.05 vs. control and clopidogrel). No differences were observed in vessel density and fibrosis markers among groups. Conclusions: Ticagrelor is more efficient than clopidogrel in attenuating myocardial structural and functional alterations post-MI and in improving cardiac healing. These benefits are associated with persistent AMPK and Akt/PKB activation.


Subject(s)
Clopidogrel/pharmacology , Heart Ventricles/drug effects , Myocardial Infarction/drug therapy , Myocytes, Cardiac/drug effects , Purinergic P2Y Receptor Antagonists/pharmacology , Receptors, Purinergic P2/drug effects , Ticagrelor/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Disease Models, Animal , Echocardiography , Fibrosis , Heart Ventricles/diagnostic imaging , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Magnetic Resonance Imaging, Cine , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y12 , Signal Transduction/drug effects , Stroke Volume/drug effects , Sus scrofa , Time Factors , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
18.
Int J Cardiol ; 270: 28-35, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29936043

ABSTRACT

AIMS: Milk thistle (Silybum marianum; SM) is an herb commonly used for hepatoprotection with antioxidant and antifibrotic properties. We investigated in pigs the cardiac effects of SM intake during the acute phase of myocardial infarction (MI) and remodeling period post-MI. METHODS: Study-1 tested the effect of SM use on the acute phase of MI. Hence, animals were distributed to a control group or to receive SM prior infarction (1.5 h ischemia). Animals were sacrificed after 2.5 h of reperfusion. Study-2 tested the effect of SM use in the cardiac remodeling phase. Accordingly, animals received for 10 d diet ±â€¯SM prior MI and followed the same regime for 3 weeks and then sacrificed. Study-3 tested the effect of SM in a non-infarcted heart; therefore, animals received for 10 d diet ±â€¯SM and then sacrificed. RESULTS: Animals taking SM before MI showed a reduction in cardiac damage (decreased oxidative damage, ROS production and xanthine oxidase levels; preserved mitochondrial function; and increased myocardial salvage; p < 0.05) versus controls. Animals that remained on chronic SM intake post-MI improved left ventricular remodeling. This was associated with the attenuation of the TGFß1/TßRs/SMAD2/3 signaling, lower myofibroblast transdifferentiation and collagen content in the border zone (p < 0.05 vs. all other groups). Cardiac contractility improved in animals taking SM (p < 0.05 vs. post-MI-control). No changes in cardiac function or fibrosis were detected in animals on SM but without MI. CONCLUSION: Intake of SM protects the heart against the deleterious effects of an MI and favors cardiac healing. These benefits may be attributed to the antioxidant and antifibrotic properties of SM.


Subject(s)
Cardiotonic Agents/therapeutic use , Myocardial Infarction/drug therapy , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Silybum marianum , Ventricular Remodeling/drug effects , Animals , Cardiotonic Agents/isolation & purification , Cardiotonic Agents/pharmacology , Cells, Cultured , Fibrosis , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Oxidative Stress/physiology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Swine , Ventricular Remodeling/physiology
19.
J Am Coll Cardiol ; 70(2): 165-178, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28683964

ABSTRACT

BACKGROUND: Beneficial effects of high-density lipoproteins (HDL) seem altered in patients with symptomatic cardiovascular disease. We recently demonstrated in a swine model of ischemia-reperfusion (IR) that hypercholesterolemia abolishes HDL-related cardioprotection. OBJECTIVES: This study sought to investigate, using the same animal model, whether the reported impairment of HDL cardioprotective function was associated with alterations in HDL remodeling and functionality. METHODS: Pigs were fed a normocholesterolemic (NC) or hypercholesterolemic (HL) diet for 10 days, reaching non-HDL cholesterol concentrations of 38.2 ± 3.5 mg/dl and 218.6 ± 27.6 mg/dl, respectively (p < 0.0001). HDLs were isolated, and lipidomics and differential proteomics tests were performed to determine HDL molecular changes. HDL functionality and particle size were determined. RESULTS: Using principal component analysis, we identified 255 molecular lipid species differentially clustered in NC-HDL and HL-HDL. Ninety lipid metabolites were differentially expressed, and 50 showed at least 1.5-fold variation (false discovery rate adjustment q value <0.05). HL-HDLs presented a core enriched in cholesteryl esters and a surface depleted of phosphatidylcholine species containing polyunsaturated and long-chain fatty acids, indicating the presence of mature HDL particles with low surface fluidity. Hypercholesterolemia induced an important change in HDL-transported proteins (576 spots in HL-HDL vs. 621 spots in NC-HDL). HL-HDLs showed a reduced content of lipocalin retinol binding protein 4 and apolipoprotein M and in the retinoic acid-transporter cellular retinoic acid binding protein 1 (p < 0.05 vs. NC-HDL). No changes were observed in apolipoprotein A-I content and profile. Functionally, HL-HDL showed lower antioxidant activity (-35%) and a reduced capacity to efflux cholesterol (-60%) compared to NC-HDL (p < 0.05). Hypercholesterolemia induced larger HDL particles. CONCLUSIONS: We demonstrate that hypercholesterolemia induces HDL lipidomic changes, losing phosphatidylcholine-lipid species and gaining cholesteryl esters, and proteomic changes, with losses in cardioprotective proteins. These remodeling changes shifted HDL particles toward a dysfunctional state.


Subject(s)
Coronary Artery Disease/blood , Hypercholesterolemia/blood , Lipoproteins, HDL/chemistry , Proteomics/methods , Animals , Disease Models, Animal , Lipoproteins, HDL/blood , Particle Size , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...