Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Mol Neurobiol ; 60(7): 4017-4029, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37016046

ABSTRACT

The role of intestinal microbiota in the genesis of mental health has received considerable attention in recent years, given that probiotics are considered promising therapeutic agents against major depressive disorder. Komagataella pastoris KM71H is a yeast with probiotic properties and antidepressant-like effects in animal models of depression. Hence, we evaluated the antidepressant-like effects of K. pastoris KM71H in a model of antibiotic-induced intestinal dysbiosis in male Swiss mice. The mice received clindamycin (200 µg, intraperitoneal) and, after 24 h, were treated with K. pastoris KM71H at a dose of 8 log CFU/animal by intragastric administration (ig) or PBS (vehicle, ig) for 14 consecutive days. Afterward, the animals were subjected to behavioral tests and biochemical analyses. Our results showed that K. pastoris KM71H administration decreased the immobility time in the tail suspension test and increased grooming activity duration in the splash test in antibiotic-treated mice, thereby characterizing its antidepressant-like effect. We observed that these effects of K. pastoris KM71H were accompanied by the modulation of the intestinal microbiota, preservation of intestinal barrier integrity, and restoration of the mRNA levels of occludin, zonula occludens-1, zonula occludens-2, and toll-like receptor-4 in the small intestine, and interleukin-1ß in the hippocampi of mice. Our findings provide solid evidence to support the development of K. pastoris KM71H as a new probiotic with antidepressant-like effects.


Subject(s)
Depressive Disorder, Major , Gastrointestinal Microbiome , Male , Animals , Mice , Anti-Bacterial Agents/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
2.
Curr Med Chem ; 30(21): 2357-2395, 2023.
Article in English | MEDLINE | ID: mdl-35708081

ABSTRACT

Neurodegenerative and mental disorders are a public health burden with pharmacological treatments of limited efficacy. Organoselenium compounds are receiving great attention in medicinal chemistry mainly because of their antioxidant and immunomodulatory activities, with a multi-target profile that can favor the treatment of multifactorial diseases. Therefore, the purpose of this review is to discuss recent preclinical studies about organoselenium compounds as therapeutic agents for the management of mental (e.g., depression, anxiety, bipolar disorder, and schizophrenia) and neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis). We have summarized around 70 peer-reviewed articles from 2016 to the present that used in silico, in vitro, and/or in vivo approaches to assess the neuropharmacology of selenium- containing compounds. Among the diversity of organoselenium molecules investigated in the last five years, diaryl diselenides, Ebselen-derivatives, and Se-containing heterocycles are the most representative. Ultimately, this review is expected to provide disease-oriented information regarding the neuropharmacology of organoselenium compounds that can be useful for the design, synthesis, and pharmacological characterization of novel bioactive molecules that can potentially be clinically viable candidates.


Subject(s)
Mental Disorders , Organoselenium Compounds , Humans , Neuropharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Mental Disorders/drug therapy , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Organoselenium Compounds/chemistry
3.
J Inorg Biochem ; 237: 112013, 2022 12.
Article in English | MEDLINE | ID: mdl-36183642

ABSTRACT

Two new Cu(II) complexes based on 4-(arylchalcogenyl)-1H-pyrazoles monodentate bis(ligand) containing selenium or sulfur groups (2a and 2b) have been synthesized and characterized by IR spectroscopy, high-resolution mass spectrometry (HRMS), and by X-ray crystallography. In the effort to propose new applications for the biomedical area, we evaluated the antioxidant activity and cytotoxicity of the newly synthesized complexes. The antioxidant activity of the Cu(II) complexes (2a - 2b) were assessed through their ability to inhibit the formation of reactive species (RS) induced by sodium azide and to scavenge the synthetic radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS+). Both copper complexes containing selenium (2a) and sulfur (2b) presented in vitro antioxidant activity. The (1a - 1b and 2a - 2b) compounds did not show cytotoxicity in V79 cells at low concentrations. Furthermore, the antiproliferative activity of free ligands (1a - 1b) and their complexes (2a - 2b) were tested against two human tumor cell lines: MCF-7 (breast adenocarcinoma) and HepG2 (hepatocarcinoma). Also, 2a was tested against U2OS (osteosarcoma). Our results demonstrated that 1a and 1b show little or no growth inhibition activities on human cell lines.The 2a compound exhibited good cytotoxic activity toward human tumor cell lines. However, 2a showed no selectivity, with a selectivity index of 1.12-1.40. Complex 2b was selective for the MCF-7 human tumor cell lines with IC50 of 59 ± 2 µM. This study demonstrates that the Cu(II) complexes 2a and 2b represent promising antitumoral compounds, and further studies are necessary to understand the molecular mechanisms of these effects.


Subject(s)
Coordination Complexes , Selenium , Humans , Ligands , Antioxidants/pharmacology , Copper/chemistry , Pyrazoles/pharmacology , Sulfur , Coordination Complexes/chemistry
4.
Brain Res ; 1784: 147845, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35219720

ABSTRACT

Essential oils (EO) are plant extracts widely used for various pharmacological applications and their antioxidant and anti-inflammatory effects have received a lot of attention because they hold the potential to reduce oxidative stress, and neuroinflammation, alterations involved in the pathophysiology of major depressive disorder. This study examined the benefits of administration of flower EO of the Tagetes minuta (10 and 50 mg/kg, intragastric route) in attenuating behavioral, neurochemical, and neuroendocrine changes in animal models of depressive-like behavior induced by acute restraint stress and lipopolysaccharide (0.83 mg/kg, intraperitoneally). We demonstrated that the treatment of mice with flower EO of the T. minuta reversed the depressive-like behavior induced by stress or inflammatory challenge in mice. This effect is most likely due to the reversal of oxidative stress in the hippocampus of mice, the decrease in plasma corticosterone levels, and restoration of the mRNA levels of brain-derived neurotrophic factor, phosphatidylinositol-3-kinase, protein kinase B, and extracellular signal-regulated kinase 2. As an outcome, flower EO of the T. minuta has promising antidepressant properties and could be considered for new therapeutic strategies for major depressive disorder.


Subject(s)
Depressive Disorder, Major , Oils, Volatile , Tagetes , Animals , Behavior, Animal , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Depressive Disorder, Major/metabolism , Disease Models, Animal , Flowers/metabolism , Hippocampus/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Oxidative Stress , Proto-Oncogene Proteins c-akt/metabolism , Tagetes/metabolism
5.
Pharmacol Res ; 171: 105740, 2021 09.
Article in English | MEDLINE | ID: mdl-34246781

ABSTRACT

Many studies have suggested that imbalance of the gut microbial composition leads to an increase in pro-inflammatory cytokines and promotes oxidative stress, and this are directly associated with neuropsychiatric disorders, including major depressive disorder (MDD). Clinical data indicated that the probiotics have positive impacts on the central nervous system and thus may have a key role to treatment of MDD. This study examined the benefits of administration of Komagataella pastoris KM71H (8 log UFC·g-1/animal, intragastric route) in attenuating behavioral, neurochemical, and neuroendocrine changes in animal models of depressive-like behavior induced by repeated restraint stress and lipopolysaccharide (0.83 mg/kg). We demonstrated that pretreatment of mice with this yeast prevented depression-like behavior induced by stress and an inflammatory challenge in mice. We believe that this effect is due to modulation of the permeability of the blood-brain barrier, restoration in the mRNA levels of the Nuclear factor kappa B, Interleukin 1ß, Interferon γ, and Indoleamine 2 3-dioxygenase, and prevention of oxidative stress in the prefrontal cortices, hippocampi, and intestine of mice and of the decrease the plasma corticosterone levels. Thus, we conclude that K. pastoris KM71H has properties for a new proposal of probiotic with antidepressant-like effect, arising as a promising therapeutic strategy for MDD.


Subject(s)
Antidepressive Agents/therapeutic use , Depression/therapy , Depressive Disorder, Major/therapy , Probiotics/therapeutic use , Saccharomycetales , Stress, Psychological/therapy , Animals , Antidepressive Agents/pharmacology , Behavior, Animal , Blood-Brain Barrier/metabolism , Brain/metabolism , Corticosterone/blood , Depression/metabolism , Depression/pathology , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/pathology , Disease Models, Animal , Gene Expression , Intestine, Small/anatomy & histology , Intestine, Small/metabolism , Lipopolysaccharides , Male , Mice , Oxidative Stress , Probiotics/pharmacology , Spleen/pathology , Stress, Psychological/metabolism , Stress, Psychological/pathology
6.
Behav Brain Res ; 396: 112874, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32835778

ABSTRACT

The contribution of oxidative stress has been described in numerous studies as one of the main pathways involved in the pathophysiology of anxiety and its comorbidities, such as chronic pain. Therefore, in this study, we investigated the anxiolytic-like, antiallodynic, and anti-hyperalgesic effects of 3,5-dimethyl-1-phenyl-4-(phenylselanyl)-1H-pyrazole (SePy) in response to acute restraint stress (ARS) in mice through the modulation of oxidative stress and neuroendocrine responses. Mice were restrained for 2 h followed by SePy (1 or 10 mg/kg, intragastrically) treatment. Behavioral, and biochemical tests were performed after further 30 min. The treatment with SePy reversed (i) the decreased time spent and the number of entries in the open arms of the elevated plus-maze apparatus, (ii) the decreased time spent in the central zone of the open field test and the increased number of grooming, (iii) the increased number of marbles buried, (iv) the increased response frequency of Von Frey Hair stimulation, and (v) the decreased latency time to nociceptive response in the hot plate test stress induced by ARS. Biochemically, SePy reversed ARS-induced increased levels of plasma corticosterone, and reversed the ARS-induced alterations in the levels of reactive species, lipid peroxidation, and superoxide dismutase and catalase activities in the prefrontal cortices and hippocampi of mice. Moreover, a molecular docking approach suggested that SePy may interact with the active site of the glucocorticoid receptor. Altogether, these results indicate that SePy attenuated anxiolytic-like behavior, hyperalgesia, and mechanical allodynia while modulating oxidative stress and neuroendocrine responses in stressed mice.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Behavior, Animal/drug effects , Hippocampus/drug effects , Hyperalgesia/drug therapy , Neurosecretory Systems/drug effects , Nociception/drug effects , Oxidative Stress/drug effects , Prefrontal Cortex/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Animals , Anti-Anxiety Agents/administration & dosage , Corticosterone/blood , Male , Mice , Pyrazoles , Restraint, Physical , Selenium
7.
Brain Res ; 1741: 146880, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32417177

ABSTRACT

Bearing in mind that pain and major depressive disorder (MDD) often share biological pathways, this condition is classified as depression-pain syndrome. Mounting evidence suggests that oxidative stress is implicated in the pathophysiology of this syndrome. The development of effective pharmacological interventions for the depression-pain syndrome is of particular importance as clinical treatments for this comorbidity have shown limited efficacy. Therefore, the present study aimed to evaluate whether the 3,5-dimethyl-1-phenyl-4-(phenylselanyl)-1H-pyrazole (SePy) was able to reverse the depression-pain syndrome induced by intracerebroventricular (i.c.v) streptozotocin (STZ) in mice and the possible modulation of oxidative and nitrergic pathways in its effect. The treatment with SePy (1 and 10 mg/kg) administered intragastrically (i.g.) reversed the increased immobility time in the tail suspension test, decreased grooming time in the splash test, latency time to nociceptive response in the hot plate test, and the response frequency of Von Frey hair (VFH) stimulation induced by STZ (0.2 mg/4 µl/per mouse). Additionally, SePy (10 mg/kg, i.g.) reversed STZ-induced alterations in the levels of reactive oxygen species, nitric oxide, and lipid peroxidation and the superoxide dismutase and catalase activities in the prefrontal cortices (PFC) and hippocampi (HC) of mice. Treatment with SePy (10 mg/kg, i.g.) also reversed the STZ-induced increased expression of inducible nitric oxide synthase (iNOS) and glycogen synthase kinase 3 beta (GSK3ß) in the PFC and HC. An additional molecular docking investigation found that SePy binds to the active site of iNOS and GSK3ß. Altogether, these results indicate that the antidepressant-like effect of SePy is accompanied by decreased hyperalgesia and mechanical allodynia, which were associated with its antioxidant effect.


Subject(s)
Depression/drug therapy , Nitrosative Stress/drug effects , Oxidative Stress/drug effects , Pain/drug therapy , Pyrazoles/administration & dosage , Selenium/administration & dosage , Animals , Depression/chemically induced , Depression/metabolism , Glycogen Synthase Kinase 3 beta/chemistry , Glycogen Synthase Kinase 3 beta/metabolism , Injections, Intraventricular , Male , Mice , Nitric Oxide Synthase Type II/chemistry , Nitric Oxide Synthase Type II/metabolism , Nitrosative Stress/physiology , Oxidative Stress/physiology , Pain/chemically induced , Pain/metabolism , Pain Measurement/drug effects , Pain Measurement/methods , Protein Structure, Secondary , Streptozocin/administration & dosage , Streptozocin/toxicity
8.
Front Neurosci ; 12: 486, 2018.
Article in English | MEDLINE | ID: mdl-30072867

ABSTRACT

Inasmuch, as the major depressive disorder (MDD) has been characterized as a heterogeneous disease as the inflammatory processes, neurotrophic factors' dysfunction and oxidative/nitrosative stress are believed to play a vital role in its establishment. Organoselenium compounds stand out due to their antioxidant, anti-inflammatory, neuroprotective, and antidepressant effects. In this sense, the present study investigated the effect of 3-((4-methoxyphenyl)selanyl)-2-phenylimidazo[1,2-a]pyridine (MPI; 20 and 50 mg/kg, intragastrically) pretreatment [30 min prior lipopolysaccharide (LPS) challenge (0.83 mg/kg)] on acute LPS induced depressive-like behavior, neuroinflammation, and oxidative stress. MPI was able to prevent the increased immobility time induced by LPS on the forced swimming test (FST), the increase in pro-inflammatory cytokines' expression in the hippocampus (HC) of mice after LPS challenge via NFkB downregulation, and the increase of the reactive oxygen species generation and lipid peroxidation in the prefrontal cortex and HC of mice. It was observed that at the doses tested, MPI protected against reducing levels of BDNF in the cortex and HC of mice challenged with LPS. These observations suggest that the antidepressant-like effect of MPI depends on its capacity to modulate the inflammatory, antioxidant, and neurotrophic systems.

9.
Free Radic Biol Med ; 113: 395-405, 2017 12.
Article in English | MEDLINE | ID: mdl-29055824

ABSTRACT

Activated white blood cells generate multiple oxidants in response to invading pathogens. Thus, hypochlorous acid (HOCl) is generated via the reaction of myeloperoxidase (from neutrophils and monocytes) with hydrogen peroxide, and peroxynitrous acid (ONOOH), a potent oxidizing and nitrating agent is formed from superoxide radicals and nitric oxide, generated by stimulated macrophages. Excessive or misplaced production of these oxidants has been linked to multiple human pathologies, including cardiovascular disease. Atherosclerosis is characterized by chronic inflammation and the presence of oxidized materials, including extracellular matrix (ECM) proteins, within the artery wall. Here we investigated the potential of selenium-containing indoles to afford protection against these oxidants, by determining rate constants (k) for their reaction, and quantifying the extent of damage on isolated ECM proteins and ECM generated by human coronary artery endothelial cells (HCAECs). The novel selenocompounds examined react with HOCl with k 0.2-1.0 × 108M-1s-1, and ONOOH with k 4.5-8.6 - × 105M-1s-1. Reaction with H2O2 is considerably slower (k < 0.25M-1s-1). The selenocompound 2-phenyl-3-(phenylselanyl)imidazo[1,2-a]pyridine provided protection to human serum albumin (HSA) against HOCl-mediated damage (as assessed by SDS-PAGE) and damage to isolated matrix proteins induced by ONOOH, with a concomitant decrease in the levels of the biomarker 3-nitrotyrosine. Structural damage and generation of 3-nitroTyr on HCAEC-ECM were also reduced. These data demonstrate that the novel selenium-containing compounds show high reactivity with oxidants and may modulate oxidative and nitrosative damage at sites of inflammation, contributing to a reduction in tissue dysfunction and atherogenesis.


Subject(s)
Antioxidants/chemistry , Extracellular Matrix/chemistry , Hydrogen Peroxide/chemistry , Hypochlorous Acid/chemistry , Indoles/chemistry , Organoselenium Compounds/chemistry , Peroxynitrous Acid/chemistry , Antioxidants/chemical synthesis , Cell Line , Coronary Vessels/chemistry , Endothelial Cells/chemistry , Fibronectins/chemistry , Heparan Sulfate Proteoglycans/chemistry , Humans , Hydrogen Peroxide/antagonists & inhibitors , Hypochlorous Acid/antagonists & inhibitors , Indoles/chemical synthesis , Kinetics , Laminin/chemistry , Organoselenium Compounds/chemical synthesis , Oxidation-Reduction , Peroxynitrous Acid/antagonists & inhibitors , Serum Albumin, Human/chemistry
10.
J Psychopharmacol ; 31(9): 1263-1273, 2017 09.
Article in English | MEDLINE | ID: mdl-28661258

ABSTRACT

Organoselenium compounds and indoles have gained attention due to their wide range of pharmacological properties. Depression is a recurrent and disabling psychiatric illness and current evidences support that oxidative stress and neuroinflammation are mechanisms underlying the pathophysiology of this psychiatric condition. Here, we evaluated the effect of 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole (CMI) in lipopolysaccharide (LPS)-induced depressive-like behaviour, neuroinflammation and oxidative stress in male mice. CMI pre-treatment (20 and 50 mg/kg, intragastrically) significantly attenuated LPS (0.83 mg/kg, intraperitoneally)-induced depressive-like behaviour in mice by reducing the immobility time in the tail suspension test (TST) and forced swimming test (FST). CMI pre-treatment ameliorated LPS-induced neuroinflammation by reducing the levels of interleukin (IL)-1ß, IL-4 and IL-6 in the hippocampus and prefrontal cortex, as well as markers of oxidative damage. Additionally, we investigated the toxicological effects of CMI (200 mg/kg, i.g.) in the liver, kidney and brain through determination of the activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), δ-aminolevulinate dehydratase (δ-ALA-D) and creatinine levels. These biomarkers were not modified, indicating the possible absence of neuro-, hepato- and nephrotoxic effects. Our results suggest that CMI could be a therapeutic approach for the treatment of depression and other neuropsychiatric disorders associated with inflammation and oxidative stress.


Subject(s)
Antidepressive Agents/pharmacology , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , Oxidative Stress/drug effects , Selenium/pharmacology , Animals , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/metabolism , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Interleukin-4/metabolism , Interleukin-6/metabolism , Male , Mice , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Swimming , Tumor Necrosis Factor-alpha/metabolism
11.
Regul Toxicol Pharmacol ; 73(3): 868-74, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26456665

ABSTRACT

Selenium is an essential micronutrient with several biological roles in the human body, but supra nutritional consumption can cause toxic effects. The potential deleterious effects of organoselenium compounds are controversial. The compound α-(phenylselanyl) acetophenone (PSAP) exhibits antioxidant, antidepressant-like and glutathione peroxidase-like activity, which makes important the elucidation of any toxic effects. Hence, the present study aims to investigate the in vitro toxicity of PSAP in Chinese Hamster ovary cells (through MTT assay) and analyse its genotoxicity using the comet assay in mice leukocytes after acute or chronic treatments, alongside with biochemical analyses. Our results demonstrate that the oral administration of PSAP in acute (1, 5, 10, 50, 200 mg/kg) and chronic (1, 10, 50, 200 mg/kg) doses did not cause genotoxicity. The compound presented cytotoxic effect in the MTT assay just at 500 µM after 24 h of administration and at 250 and 500 µM after 48 and 72 h of administration. According to biochemical analysis, PSAP presented a minor toxic effect by altering δ-ALA-D activity in liver and catalase activity in kidney at the highest tested concentration. Taking together, these data indicate that PSAP has low toxic effects after chronic administration in mice.


Subject(s)
Acetophenones/toxicity , Antidepressive Agents/toxicity , Antioxidants/toxicity , Organoselenium Compounds/toxicity , Acetophenones/administration & dosage , Administration, Oral , Animals , Antidepressive Agents/administration & dosage , Antioxidants/administration & dosage , CHO Cells , Catalase , Cell Survival/drug effects , Comet Assay , Cricetulus , DNA Damage , Dose-Response Relationship, Drug , Drug Administration Schedule , Kidney/drug effects , Kidney/enzymology , Leukocytes/drug effects , Leukocytes/pathology , Liver/drug effects , Liver/enzymology , Male , Mice , Organoselenium Compounds/administration & dosage , Porphobilinogen Synthase/metabolism , Risk Assessment
12.
Pharmacol Biochem Behav ; 127: 111-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25449795

ABSTRACT

Dehydrozingerone (DHZ) is a phenolic compound isolated from ginger rhizomes (Zingiber officinale). It is known for its diverse spectrum of biological activities as an antioxidant, anti-inflammatory and antitumor compound. The present study was designed to assess the antidepressant effect of DHZ and the involvement of the monoaminergic system and to evaluate its in vitro antioxidant activity in the hippocampus, cortex and cerebellum of mice. For this study, the tail suspension test (TST), forced swim test (FST) and yohimbine lethality test were performed. DHZ administered orally 30min prior to testing reduced the immobility time in the TST (1-40mg/kg) and the FST (10-40mg/kg), with no change in locomotor activity in the open field test. The antidepressant-like effect of DHZ (1mg/kg) was prevented by ketanserin (1mg/kg, i.p.; a 5-HT2A/2C receptor antagonist), ondansetron (1mg/kg, i.p.; a 5-HT3 receptor antagonist), prazosin (1mg/kg, i.p., an α1-adrenoceptor antagonist) and yohimbine (1mg/kg, i.p., an α2-adrenoceptor antagonist) pretreatments. Furthermore, DHZ administered at doses of 10 and 20mg/kg increased the lethality of yohimbine (35mg/kg, i.p.). DHZ had antioxidant activity on in vitro lipid peroxidation induced by sodium nitroprusside in all brain regions tested. The results revealed that DHZ has a potent antidepressant effect, which seems to involve the serotonergic and noradrenergic systems.


Subject(s)
Adrenergic Antagonists/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Motor Activity/drug effects , Serotonin Antagonists/pharmacology , Styrenes/therapeutic use , Animals , Antidepressive Agents/pharmacology , Depression/psychology , Dose-Response Relationship, Drug , Immobilization/psychology , Male , Mice , Styrenes/pharmacology
13.
Bioorg Med Chem ; 22(21): 6242-9, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25217848

ABSTRACT

We describe here a simple method for the synthesis of glycerol derivatives containing an organochalcogen unit (Se, Te and S) using NaBH4 and PEG-400 as a solvent. The new methodology was used to synthesize a range of new organochalcogen compounds in good yields. Furthermore, four of synthesized compounds were evaluated for their antioxidant activity using different assays, such as 2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, nitric oxide (NO) and hydroxyl radical (OH) scavenging, ferric ion reducing antioxidant power (FRAP), ferrous ion chelating, superoxide dismutase-like activity and inhibition of linoleic acid lipid peroxidation. The new organotellurium 2,2-dimethyl-4-(phenyltellanylmethyl)-1,3-dioxolane 3 j showed antioxidant activity and was more effective in inhibition of induced lipid peroxidation compared to solketal 4. Selenium and sulfur analogs 3a and 3m and solketal 4 did not present antioxidant effect. These findings suggest that 2,2-dimethyl-4-(phenyltellanylmethyl)-1,3-dioxolane 3 j is a promising antioxidant and that its activity is influenced by the presence of the tellurium atom on the structure.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Chalcogens/chemistry , Chalcogens/pharmacology , Glycerol/chemistry , Glycerol/pharmacology , Antioxidants/chemical synthesis , Biphenyl Compounds/chemistry , Chalcogens/chemical synthesis , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Glycerol/chemical synthesis , Lipid Peroxidation/drug effects , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Picrates/chemistry
14.
Chem Biol Interact ; 205(2): 100-7, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-23830813

ABSTRACT

The antioxidant potential of organoselenium compounds has been extensively investigated because oxidative stress is a hallmark of a variety of human diseases. In this study, we report the influence of substituent groups on the antioxidant activity of (R)-Se-aryl thiazolidine-4-carboselenoate (Se-PTC) in several in vitro assays. The amino group in the thiazolidine ring affects the antioxidant activity of the compound. Our data revealed that Se-PTC a had higher radical scavenging efficiency in the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS(+)) assays compared to other compounds. In the ferric ion reducing antioxidant power (FRAP) assay, Se-PTC a exhibited ferric-reducing ability at concentrations as low as 5µM. However, this effect was diminished when the amino group was protected with carbamate (Se-PTC d). In the nitric oxide scavenging assay, Se-PTC c presented better NO-scavenging than Se-PTC b. However, Se-PTC a and d did not prevent NO formation at any of the tested concentrations. Se-PTC c decreased the sodium nitroprussate-induced lipid peroxidation in the cortex and hippocampus of mice. In summary, we demonstrate that Se-PTC is a promising antioxidant compound and that the compound's activity is influenced by the amino group and by the characteristics of the arylselenium substituents. Thus, these compounds may be used as synthetic antioxidants that provide protection against oxidative diseases.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Thiazolidines/chemistry , Thiazolidines/pharmacology , Animals , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Brain/drug effects , Brain/metabolism , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Humans , Lipid Peroxidation/drug effects , Male , Mice , Picrates/chemistry , Picrates/pharmacology , Structure-Activity Relationship , Sulfonic Acids/chemistry , Sulfonic Acids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL