Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 924: 171720, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38490431

ABSTRACT

Resuspension of road dust is a major source of airborne particulate matter (PM) in urban environments. Inhalation of ultrafine particles (UFP; < 0.1 µm) represents a health concern due to their ability to reach the alveoli and be translocated into the blood stream. It is therefore important to characterize chemical properties of UFPs associated with vehicle emissions. We investigated the capability of Single-Particle ICP-MS (SP-ICP-MS) to quantify key metal(loid)s in nanoparticles (NPs; < 0.1 µm) isolated from road dust collected in Toronto, Canada. Water extraction was performed to separate the <1-µm fraction from two different road dust samples (local road vs. arterial road) and a multi-element SP-ICP-MS analysis was then conducted on the samples' supernatants. Based on the particle number concentrations obtained for both supernatants, the metal(loid)-containing NPs could be grouped in the following categories: high (Cu and Zn, > 1.3 × 1011 particles/L), medium (V, Cr, Ba, Pb, Sb, Ce, La), low (As, Co, Ni, < 4.6 × 109 particles/L). The limit of detection for particle number concentration was below 5.5 × 106 particles/L for most elements, except for Cu, Co, Ni, Cr, and V (between 0.9 and 7.7 × 107 particles/L). The results demonstrate that road dust contains a wide range of readily mobilizable metal(loid)-bearing NPs and that NP numbers may vary as a function of road type. These findings have important implications for human health risk assessments in urban areas. Further research is needed, however, to comprehensively assess the NP content of road dust as influenced by various factors, including traffic volume and speed, fleet composition, and street sweeping frequency. The described method can quickly characterize multiple isotopes per sample in complex matrices, and offers the advantage of rapid sample scanning for the identification of NPs containing potentially toxic transition metal(loid)s at a low detection limit.


Subject(s)
Metalloids , Metals, Heavy , Trace Elements , Humans , Dust/analysis , Environmental Monitoring/methods , Metals/analysis , Vehicle Emissions/analysis , Particulate Matter/analysis , Trace Elements/analysis , Risk Assessment , Metals, Heavy/analysis , Cities , Metalloids/analysis
2.
J Vis Exp ; (180)2022 02 10.
Article in English | MEDLINE | ID: mdl-35225276

ABSTRACT

The tricuspid valve (TV) regulates the unidirectional flow of unoxygenated blood from the right atrium to the right ventricle. The TV consists of three leaflets, each with unique mechanical behaviors. These variations among the three TV leaflets can be further understood by examining their four anatomical layers, which are the atrialis (A), spongiosa (S), fibrosa (F), and ventricularis (V). While these layers are present in all three TV leaflets, there are differences in their thicknesses and microstructural constituents that further influence their respective mechanical behaviors. This protocol includes four steps to elucidate the layer-specific differences: (i) characterize the mechanical and collagen fiber architectural behaviors of the intact TV leaflet, (ii) separate the composite layers (A/S and F/V) of the TV leaflet, (iii) carry out the same characterizations for the composite layers, and (iv) perform post-hoc histology assessment. This experimental framework uniquely allows the direct comparison of the intact TV tissue to each of its composite layers. As a result, detailed information regarding the microstructure and biomechanical function of the TV leaflets can be collected with this protocol. Such information can potentially be used to develop TV computational models that seek to provide guidance for the clinical treatment of TV disease.


Subject(s)
Microdissection , Tricuspid Valve , Extracellular Matrix , Stress, Mechanical , Tricuspid Valve/surgery
3.
Acta Biomater ; 135: 425-440, 2021 11.
Article in English | MEDLINE | ID: mdl-34481053

ABSTRACT

The leaflets of the atrioventricular heart valves (AHVs) regulate the one-directional flow of blood through a coordination of the extracellular matrix components, including the collagen fibers, elastin, and glycosaminoglycans. Dysfunction of the AHVs, such as those caused by unfavorable microstructural remodeling, lead to valvular heart diseases and improper blood flow, which can ultimately cause heart failure. In order to better understand the mechanics and remodeling of the AHV leaflets and how therapeutics can inadvertently cause adverse microstructural changes, a systematic characterization of the role of each constituent in the biomechanical properties is appropriate. Previous studies have quantified the contributions of the individual microstructural components to tissue-level behavior for the semilunar valve cusps, but not for the AHV leaflets. In this study, for the first time, we quantify the relationships between microstructure and mechanics of the AHV leaflet using a three-step experimental procedure: (i) biaxial tension and stress relaxation testing of control (untreated) porcine AHV anterior leaflet specimens; (ii) enzyme treatment to remove a portion of either the collagen or elastin constituent; and (iii) biaxial tensile and stress relaxation testing of the constituent-removed (treated) specimens. We have observed that the removal of ∼100% elastin resulted in a ∼10% decrease in the tissue extensibility with biaxial tension and a ∼10% increase in the overall stress reduction with stress relaxation. In contrast, removal of 46% of the collagen content insignificantly affected tissue extensibility with biaxial tension and significantly increased stress decay (10%) with stress relaxation. These findings provide an insight into the microstructure-mechanics relationship of the AHVs and will be beneficial for future developments and refinements of microstructurally informed constitutive models for the simulation of diseased and surgically intervened AHV function. STATEMENT OF SIGNIFICANCE: This study presents, for the first time, a thorough mechanical characterization of the atrioventricular heart valve leaflets before and after enzymatic removal of elastin and collagen. We found that the biaxial tensile properties of elastin-deficient tissues and collagen-deficient are stiffer. The fact of elastin supporting low-stress valve function and collagen as the main load-bearing component was evident in a decrease in the low-tension modulus for elastin-deficient tissues and in the high-tension modulus for collagen-deficient tissues. Our quantification and experimental technique could be useful in predicting the disease-related changes in heart valve mechanics. The information obtained from this work is valuable for refining the constitutive models that describe the essential microstructure-mechanics relationship.


Subject(s)
Aortic Valve , Elastin , Animals , Biomechanical Phenomena , Collagen , Stress, Mechanical , Swine , Weight-Bearing
4.
Cell Rep ; 34(13): 108913, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33789102

ABSTRACT

Prdm12 is a key transcription factor in nociceptor neurogenesis. Mutations of Prdm12 cause congenital insensitivity to pain (CIP) from failure of nociceptor development. However, precisely how deletion of Prdm12 during development or adulthood affects nociception is unknown. Here, we employ tissue- and temporal-specific knockout mouse models to test the function of Prdm12 during development and in adulthood. We find that constitutive loss of Prdm12 causes deficiencies in proliferation during sensory neurogenesis. We also demonstrate that conditional knockout from dorsal root ganglia (DRGs) during embryogenesis causes defects in nociception. In contrast, we find that, in adult DRGs, Prdm12 is dispensable for most pain-sensation and injury-induced hypersensitivity. Using transcriptomic analysis, we find mostly unique changes in adult Prdm12 knockout DRGs compared with embryonic knockout and that PRDM12 is likely a transcriptional activator in the adult. Overall, we find that the function of PRDM12 changes over developmental time.


Subject(s)
Embryonic Development , Nerve Tissue Proteins/deficiency , Nociceptors/metabolism , Pain Perception , Aging/metabolism , Animals , Carrier Proteins/genetics , Cell Proliferation , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Exons/genetics , Ganglia, Spinal/metabolism , Gene Expression Regulation, Developmental , Humans , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nociception , Pain Insensitivity, Congenital/genetics , Repressor Proteins/metabolism , Transcription, Genetic
6.
Am Econ Rev ; 105(8): 2410-2448, 2015 Aug.
Article in English | MEDLINE | ID: mdl-28935994

ABSTRACT

Many lament that weak accountability and poor governance impede economic development in Africa. Politicians rely on ethnic allegiances that deliver the vote irrespective of performance, dampening electoral incentives. Giving voters information about candidate competence counters ethnic loyalty and strengthens accountability. I extend a canonical electoral model to show how information provision flows through voter behavior and ultimately impacts the distribution of political spending. I test the theory on data from Sierra Leone using decentralization and differential radio coverage to identify information's effects. Estimates suggest that information increases voting across ethnic-party lines and induces a more equitable allocation of campaign spending. (JEL D72, D83, J15, O17, Z13).

SELECTION OF CITATIONS
SEARCH DETAIL