Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 9(50): eadi7902, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38091399

ABSTRACT

Metastasis is a nonrandom process with varying degrees of organotropism-specific source-acceptor seeding. Understanding how patterns between source and acceptor tumors emerge remains a challenge in oncology. We hypothesize that organotropism results from the macronutrient niche of cells in source and acceptor organs. To test this, we constructed and analyzed a metastatic network based on 9303 records across 28 tissue types. We found that the topology of the network is nested and modular with scale-free degree distributions, reflecting organotropism along a specificity/generality continuum. The variation in topology is significantly explained by the matching of metastatic cells to their stoichiometric niche. Specifically, successful metastases are associated with higher phosphorus content in the acceptor compared to the source organ, due to metabolic constraints in proliferation crucial to the invasion of new tissues. We conclude that metastases are codetermined by processes at source and acceptor organs, where phosphorus content is a limiting factor orchestrating tumor ecology.


Subject(s)
Ecosystem , Phosphorus , Humans , Cell Line, Tumor , Neoplasm Metastasis
2.
Bioessays ; 43(2): e2000126, 2021 02.
Article in English | MEDLINE | ID: mdl-33184914

ABSTRACT

Cancer is a singular cellular state, the emergence of which destabilises the homeostasis reached through the evolution to multicellularity. We present the idea that the onset of the cellular disobedience to the metazoan functional and structural architecture, known as the cancer phenotype, is triggered by changes in the cell's external environment that occur with ageing: what ensues is a breach of the social contract of multicellular life characteristic of metazoans. By integrating old ideas with new evidence, we propose that with ageing the environmental information that maintains a multicellular organisation is eroded, rewiring internal processes of the cell, and resulting in an internal shift towards an ancestral condition resulting in the pseudo-multicellular cancer phenotype. Once that phenotype emerges, a new local social contract is built, different from the homeostatic one, leading to tumour formation and the foundation of a novel local ecosystem.


Subject(s)
Biological Evolution , Neoplasms , Aging , Animals , Ecosystem , Humans , Neoplasms/genetics , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL