Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31658970

ABSTRACT

Upregulated expression of efflux pumps, lpxC target mutations, LpxC protein overexpression, and mutations in fabG were previously shown to mediate single-step resistance to the LpxC inhibitor CHIR-090 in P. aeruginosa Single-step selection experiments using three recently described LpxC inhibitors (compounds 2, 3, and 4) and mutant characterization showed that these mechanisms affect susceptibility to additional novel LpxC inhibitors. Serial passaging of P. aeruginosa wild-type and efflux pump-defective strains using the LpxC inhibitor CHIR-090 or compound 1 generated substantial shifts in susceptibility and underscored the interplay of efflux and nonefflux mechanisms. Whole-genome sequencing of CHIR-090 passage mutants identified efflux pump overexpression, fabG mutations, and novel mutations in fabF1 and in PA4465 as determinants of reduced susceptibility. Two new lpxC mutations, encoding A214V and G208S, that reduce susceptibility to certain LpxC inhibitors were identified in these studies, and we show that these and other target mutations differentially affect different LpxC inhibitor scaffolds. Lastly, the combination of target alteration (LpxCA214V) and upregulated expression of LpxC was shown to be tolerated in P. aeruginosa and could mediate significant decreases in susceptibility.


Subject(s)
Pseudomonas aeruginosa/drug effects , Amidohydrolases/genetics , Amidohydrolases/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Microbial Sensitivity Tests , Mutation/genetics , Pseudomonas aeruginosa/genetics , Whole Genome Sequencing
2.
Sci Rep ; 8(1): 15907, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30349061

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

3.
Sci Rep ; 8(1): 14124, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30237436

ABSTRACT

Phosphorylation of Pseudomonas aeruginosa lipopolysaccharide (LPS) is important for maintaining outer membrane integrity and intrinsic antibiotic resistance. We solved the crystal structure of the LPS heptose kinase WaaP, which is essential for growth of P. aeruginosa. WaaP was structurally similar to eukaryotic protein kinases and, intriguingly, was complexed with acylated-acyl carrier protein (acyl-ACP). WaaP produced by in vitro transcription-translation was insoluble unless acyl-ACP was present. WaaP variants designed to perturb the acyl-ACP interaction were less stable in cells and exhibited reduced kinase function. Mass spectrometry identified myristyl-ACP as the likely physiological binding partner for WaaP in P. aeruginosa. Together, these results demonstrate that acyl-ACP is required for WaaP protein solubility and kinase function. To the best of our knowledge, this is the first report describing acyl-ACP in the role of a cofactor necessary for the production and stability of a protein partner.


Subject(s)
Acyl Carrier Protein/metabolism , Bacterial Proteins/metabolism , Lipopolysaccharides/metabolism , Pseudomonas aeruginosa/metabolism , Acylation
4.
Article in English | MEDLINE | ID: mdl-28096160

ABSTRACT

Argyrins are natural products with antibacterial activity against Gram-negative pathogens, such as Pseudomonas aeruginosa, Burkholderia multivorans, and Stenotrophomonas maltophilia We previously showed that argyrin B targets elongation factor G (FusA). Here, we show that argyrin B activity against P. aeruginosa PAO1 (MIC = 8 µg/ml) was not affected by deletion of the MexAB-OprM, MexXY-OprM, MexCD-OprJ, or MexEF-OprN efflux pump. However, argyrin B induced expression of MexXY, causing slight but reproducible antagonism with the MexXY substrate antibiotic ciprofloxacin. Argyrin B activity against Escherichia coli increased in a strain with nine tolC efflux pump partner genes deleted. Complementation experiments showed that argyrin was effluxed by AcrAB, AcrEF, and MdtFX. Argyrin B was inactive against Acinetobacter baumannii Differences between A. baumannii and P. aeruginosa FusA proteins at key residues for argyrin B interaction implied that natural target sequence variation impacted antibacterial activity. Consistent with this, expression of the sensitive P. aeruginosa FusA1 protein in A. baumannii conferred argyrin susceptibility, whereas resistant variants did not. Argyrin B was active against S. maltophilia (MIC = 4 µg/ml). Spontaneous resistance occurred at high frequency in the bacterium (circa 10-7), mediated by mutational inactivation of fusA1 rather than by amino acid substitutions in the target binding region. This strongly suggested that resistance occurred at high frequency through loss of the sensitive FusA1, leaving an alternate argyrin-insensitive elongation factor. Supporting this, an additional fusA-like gene (fusA2) is present in S. maltophilia that was strongly upregulated in response to mutational loss of fusA1.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Oligopeptides/pharmacology , Peptide Elongation Factor G/antagonists & inhibitors , Acinetobacter/drug effects , Acinetobacter/metabolism , Bacterial Proteins/metabolism , Burkholderia/drug effects , Burkholderia/metabolism , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Peptide Elongation Factor G/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Stenotrophomonas maltophilia/drug effects , Stenotrophomonas maltophilia/metabolism
5.
PLoS One ; 7(9): e42657, 2012.
Article in English | MEDLINE | ID: mdl-22970117

ABSTRACT

Argyrins, produced by myxobacteria and actinomycetes, are cyclic octapeptides with antibacterial and antitumor activity. Here, we identify elongation factor G (EF-G) as the cellular target of argyrin B in bacteria, via resistant mutant selection and whole genome sequencing, biophysical binding studies and crystallography. Argyrin B binds a novel allosteric pocket in EF-G, distinct from the known EF-G inhibitor antibiotic fusidic acid, revealing a new mode of protein synthesis inhibition. In eukaryotic cells, argyrin B was found to target mitochondrial elongation factor G1 (EF-G1), the closest homologue of bacterial EF-G. By blocking mitochondrial translation, argyrin B depletes electron transport components and inhibits the growth of yeast and tumor cells. Further supporting direct inhibition of EF-G1, expression of an argyrin B-binding deficient EF-G1 L693Q variant partially rescued argyrin B-sensitivity in tumor cells. In summary, we show that argyrin B is an antibacterial and cytotoxic agent that inhibits the evolutionarily conserved target EF-G, blocking protein synthesis in bacteria and mitochondrial translation in yeast and mammalian cells.


Subject(s)
Oligopeptides/metabolism , Peptide Elongation Factor G/metabolism , Allosteric Site , Amino Acid Sequence , Animals , Burkholderia/drug effects , Cell Line, Tumor , Conserved Sequence , Crystallography, X-Ray , Humans , Mammals , Microbial Sensitivity Tests , Mitochondrial Proteins/metabolism , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Oligopeptides/chemistry , Oligopeptides/pharmacology , Peptide Elongation Factor G/antagonists & inhibitors , Peptide Elongation Factor G/chemistry , Protein Binding/drug effects , Pseudomonas aeruginosa/drug effects , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid
6.
Antimicrob Agents Chemother ; 56(1): 17-27, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22024823

ABSTRACT

Testing P. aeruginosa efflux pump mutants showed that the LpxC inhibitor CHIR-090 is a substrate for MexAB-OprM, MexCD-OprJ, and MexEF-OprN. Utilizing P. aeruginosa PAO1 with a chromosomal mexC::luxCDABE fusion, luminescent mutants arose on medium containing 4 µg/ml CHIR-090, indicating upregulation of MexCD-OprJ. These mutants were less susceptible to CHIR-090 (MIC, 4 µg/ml) and had mutations in the mexCD-oprJ repressor gene nfxB. Nonluminescent mutants (MIC, 4 µg/ml) that had mutations in the mexAB-oprM regulator gene mexR were also observed. Plating the clinical isolate K2153 on 4 µg/ml CHIR-090 selected mutants with alterations in mexS (immediately upstream of mexT), which upregulates MexEF-OprN. A mutant altered in the putative1ribosomal binding site (RBS) upstream of lpxC and overexpressing LpxC was selected on a related LpxC inhibitor and exhibited reduced susceptibility to CHIR-090. Overexpression of LpxC from a plasmid reduced susceptibility to CHIR-090, and introduction of the altered RBS in this construct further increased expression of LpxC and decreased susceptibility to CHIR-090. Using a mutS (hypermutator) strain, a mutant with an altered lpxC target gene (LpxC L18V) was also selected. Purified LpxC L18V had activity similar to that of wild-type LpxC in an in vitro assay but had reduced inhibition by CHIR-090. Finally, an additional class of mutant, typified by an extreme growth defect, was identified. These mutants had mutations in fabG, indicating that alteration in fatty acid synthesis conferred resistance to LpxC inhibitors. Passaging experiments showed progressive decreases in susceptibility to CHIR-090. Therefore, P. aeruginosa can employ several strategies to reduce susceptibility to CHIR-090 in vitro.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Hydroxamic Acids/pharmacology , Membrane Transport Proteins/genetics , Pseudomonas aeruginosa/drug effects , Threonine/analogs & derivatives , Amidohydrolases/genetics , Amidohydrolases/metabolism , Bacterial Outer Membrane Proteins/metabolism , Base Sequence , Cloning, Molecular , Fatty Acids/metabolism , Gene Expression Regulation, Bacterial/drug effects , Genes, Reporter , Luminescent Measurements , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Molecular Sequence Data , Plasmids , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Analysis, DNA , Threonine/pharmacology , Transformation, Bacterial
7.
mBio ; 2(4)2011.
Article in English | MEDLINE | ID: mdl-21810964

ABSTRACT

Gram-negative outer membrane (OM) integrity is maintained in part by Mg(2+) cross-links between phosphates on lipid A and on core sugars of adjacent lipopolysaccharide (LPS) molecules. In contrast to other Gram-negative bacteria, waaP, encoding an inner-core kinase, could not be inactivated in Pseudomonas aeruginosa. To examine this further, expression of the kinases WaaP or WapP/WapQ/PA5006 was placed under the control of the arabinose-regulated pBAD promoter. Growth of these strains was arabinose dependent, confirming that core phosphorylation is essential in P. aeruginosa. Transmission electron micrographs of kinase-depleted cells revealed marked invaginations of the inner membrane. SDS-PAGE of total LPS from WaaP-depleted cells showed accumulation of a fast-migrating band. Mass spectrometry (MS) analysis revealed that LPS from these cells exhibits a unique truncated core consisting of two 3-deoxy-d-manno-octulosonic acids (Kdo), two l-glycero-d-manno-heptoses (Hep), and one hexose but completely devoid of phosphates, indicating that phosphorylation by WaaP is necessary for subsequent core phosphorylations. MS analysis of lipid A from WaaP-depleted cells revealed extensive 4-amino-4-deoxy-l-arabinose modification. OM prepared from these cells by Sarkosyl extraction of total membranes or by sucrose density gradient centrifugation lacked truncated LPS. Instead, truncated LPS was detected in the inner membrane fractions, consistent with impaired transport/assembly of this species into the OM. IMPORTANCE Gram-negative bacteria have an outer membrane (OM) comprised of a phospholipid inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The OM protects cells from toxic molecules and is important for survival during infection. The LPS core kinase gene waaP can be deleted in several Gram-negative bacteria but not in Pseudomonas aeruginosa. We used a controlled-expression system to deplete WaaP directly in P. aeruginosa cells, which halted growth. WaaP depletion also caused gross changes in cell morphology and led to the accumulation of an aberrant LPS lacking several core sugars and all core phosphates. The aberrant LPS failed to reach the OM, suggesting that WaaP is essential in P. aeruginosa because it is required to produce the full-length LPS that is recognized by the OM transport/assembly machinery in this organism. Therefore, WaaP may constitute a good target for the development of novel antipseudomonal agents.


Subject(s)
Cell Membrane/metabolism , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/chemistry , Phosphates/metabolism , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Cell Membrane/chemistry , Cell Membrane/genetics , Lipopolysaccharides/metabolism , Phosphotransferases/genetics , Phosphotransferases/metabolism , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics
8.
Antimicrob Agents Chemother ; 53(12): 5015-21, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19786597

ABSTRACT

The intrinsic resistance of P. aeruginosa PAO1 to the peptide deformylase inhibitor (PDF-I) LBM415 was mediated by the MexAB-OprM and MexXY-OprM efflux pumps, the latter of which was strongly induced by LBM415. Single-step exposure of PAO1 deleted for mexAB-oprM (therefore lacking both MexAB-OprM and MexXY-OprM functions) to PDF-Is selected for nfxB mutants, which express the MexCD-OprJ efflux pump, indicating that these compounds are also substrates for this pump. Selection of resistant mutants by use of levels of LBM415 greater than that accommodated by efflux yielded two additional groups of mutations, in the methionyl-tRNA(fmet) formyltransferase (fmt) and folD genes. Both mechanisms are known to impose an in vitro growth deficit (also observed here), presumably due to impairment of protein synthesis. We surmised that this inherent impairment of protein synthesis would upregulate expression of mexXY in a fashion similar to upregulation by LBM415 or by ribosome inhibitory compounds. Transcriptional profiling and/or mexX::lux promoter fusion analysis revealed that fmt and folD mutants were strongly upregulated for mexXY and another gene known to be required for upregulation of the pump, PA5471. Complementation of the fmt mutation in trans reversed this constitutive expression. This supports the notion that MexXY has a natural physiological function responding to impairment of ribosome function or protein synthesis and that fmt mutation (Fmt bypass) and folD mutation generate the intracellular mexXY-inducing signal.


Subject(s)
Bacterial Proteins/physiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/physiology , Gene Expression Regulation, Bacterial/drug effects , Gene Expression Regulation, Bacterial/genetics , Genetic Complementation Test , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Mutagenesis , Peptides/pharmacology , Tetracycline/pharmacology , Trimethoprim/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...