Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35302911

ABSTRACT

Although it is well-established that irradiation of produce can reduce food-borne pathogens and spoilage organisms, data on the effect of irradiation on polymer additives in food packaging materials are limited, particularly for those additives used in packaging leafy greens or in current food packaging materials. We investigated the effects of irradiating a nucleating agent, aluminium, hydroxybis[2,4,8,10-tetrakis(1,1-dimethylethyl)-6-hydroxy-12H-dibenzo [d,g][1,3,2]dioxaphosphocin 6-oxidato]- (CAS Reg. No. 151841-65-5), at doses of 1-20 kGy in polypropylene. That nucleating agent was then extracted using accelerated solvent extraction and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), liquid chromatography-photodiode array detection (LC-PDA), and solid-state nuclear magnetic resonance (SSNMR) spectroscopy. We found this nucleating agent was not significantly affected by radiation treatment up to 20 kGy. Therefore, this nucleating agent could potentially be useful in food packaging materials that will be irradiated at doses of 20 kGy or less. Establishing which additives are stable under anticipated irradiation doses will help support safety evaluation of food packaging materials.


Subject(s)
Polypropylenes , Tandem Mass Spectrometry , Chromatography, Liquid , Food Packaging , Organophosphates
2.
Toxins (Basel) ; 12(9)2020 08 20.
Article in English | MEDLINE | ID: mdl-32825482

ABSTRACT

Dihydrodinophysistoxin-1 (dihydro-DTX1, (M-H)-m/z 819.5), described previously from a marine sponge but never identified as to its biological source or described in shellfish, was detected in multiple species of commercial shellfish collected from the central coast of the Gulf of Maine, USA in 2016 and in 2018 during blooms of the dinoflagellate Dinophysis norvegica. Toxin screening by protein phosphatase inhibition (PPIA) first detected the presence of diarrhetic shellfish poisoning-like bioactivity; however, confirmatory analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) failed to detect okadaic acid (OA, (M-H)-m/z 803.5), dinophysistoxin-1 (DTX1, (M-H)-m/z 817.5), or dinophysistoxin-2 (DTX2, (M-H)-m/z 803.5) in samples collected during the bloom. Bioactivity-guided fractionation followed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) tentatively identified dihydro-DTX1 in the PPIA active fraction. LC-MS/MS measurements showed an absence of OA, DTX1, and DTX2, but confirmed the presence of dihydro-DTX1 in shellfish during blooms of D. norvegica in both years, with results correlating well with PPIA testing. Two laboratory cultures of D. norvegica isolated from the 2018 bloom were found to produce dihydro-DTX1 as the sole DSP toxin, confirming the source of this compound in shellfish. Estimated concentrations of dihydro-DTX1 were >0.16 ppm in multiple shellfish species (max. 1.1 ppm) during the blooms in 2016 and 2018. Assuming an equivalent potency and molar response to DTX1, the authority initiated precautionary shellfish harvesting closures in both years. To date, no illnesses have been associated with the presence of dihydro-DTX1 in shellfish in the Gulf of Maine region and studies are underway to determine the potency of this new toxin relative to the currently regulated DSP toxins in order to develop appropriate management guidance.


Subject(s)
Dinoflagellida/isolation & purification , Marine Toxins/analysis , Okadaic Acid/analogs & derivatives , Shellfish/analysis , Animals , Dinoflagellida/chemistry , Maine , Marine Toxins/toxicity , Okadaic Acid/analysis , Okadaic Acid/toxicity , Phytoplankton/chemistry , Phytoplankton/isolation & purification , Shellfish/toxicity , Shellfish Poisoning/diagnosis , Shellfish Poisoning/etiology , Tandem Mass Spectrometry/methods
3.
Plant Physiol ; 167(4): 1221-32, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25659383

ABSTRACT

The rapid identification of novel plant metabolites and assignments of newly discovered substances to natural product classes present the main bottlenecks to defining plant specialized phenotypes. Although mass spectrometry provides powerful support for metabolite discovery by measuring molecular masses, ambiguities in elemental formulas often fail to reveal the biosynthetic origins of specialized metabolites detected using liquid chromatography-mass spectrometry. A promising approach for mining liquid chromatography-mass spectrometry metabolite profiling data for specific metabolite classes is achieved by calculating relative mass defects (RMDs) from molecular and fragment ions. This strategy enabled the rapid recognition of an extensive range of terpenoid metabolites in complex plant tissue extracts and is independent of retention time, abundance, and elemental formula. Using RMD filtering and tandem mass spectrometry data analysis, 24 novel elemental formulas corresponding to glycosylated sesquiterpenoid metabolites were identified in extracts of the wild tomato Solanum habrochaites LA1777 trichomes. Extensive isomerism was revealed by ultra-high-performance liquid chromatography, leading to evidence of more than 200 distinct sesquiterpenoid metabolites. RMD filtering led to the recognition of the presence of glycosides of two unusual sesquiterpenoid cores that bear limited similarity to known sesquiterpenes in the genus Solanum. In addition, RMD filtering is readily applied to existing metabolomics databases and correctly classified the annotated terpenoid metabolites in the public metabolome database for Catharanthus roseus.


Subject(s)
Chromatography, High Pressure Liquid/methods , Glycosides/chemistry , Metabolomics , Solanum/metabolism , Tandem Mass Spectrometry/methods , Terpenes/chemistry , Glycosides/metabolism , Metabolome , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Plant Leaves/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism , Software , Solanum/chemistry , Terpenes/metabolism , Trichomes/chemistry , Trichomes/metabolism
4.
J Biol Chem ; 288(5): 3163-73, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23243312

ABSTRACT

Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Biocatalysis , Biosynthetic Pathways , Sesquiterpenes/metabolism , Valerian/enzymology , Biosynthetic Pathways/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Hydrocarbons/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Plant Proteins/genetics , Plant Proteins/metabolism , Sesquiterpenes/chemistry , Substrate Specificity , Valerian/genetics
5.
Metabolites ; 2(4): 1031-59, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-24957774

ABSTRACT

Specialized compounds from photosynthetic organisms serve as rich resources for drug development. From aspirin to atropine, plant-derived natural products have had a profound impact on human health. Technological advances provide new opportunities to access these natural products in a metabolic context. Here, we describe a database and platform for storing, visualizing and statistically analyzing metabolomics data from fourteen medicinal plant species. The metabolomes and associated transcriptomes (RNAseq) for each plant species, gathered from up to twenty tissue/organ samples that have experienced varied growth conditions and developmental histories, were analyzed in parallel. Three case studies illustrate different ways that the data can be integrally used to generate testable hypotheses concerning the biochemistry, phylogeny and natural product diversity of medicinal plants. Deep metabolomics analysis of Camptotheca acuminata exemplifies how such data can be used to inform metabolic understanding of natural product chemical diversity and begin to formulate hypotheses about their biogenesis. Metabolomics data from Prunella vulgaris, a species that contains a wide range of antioxidant, antiviral, tumoricidal and anti-inflammatory constituents, provide a case study of obtaining biosystematic and developmental fingerprint information from metabolite accumulation data in a little studied species. Digitalis purpurea, well known as a source of cardiac glycosides, is used to illustrate how integrating metabolomics and transcriptomics data can lead to identification of candidate genes encoding biosynthetic enzymes in the cardiac glycoside pathway. Medicinal Plant Metabolomics Resource (MPM) [1] provides a framework for generating experimentally testable hypotheses about the metabolic networks that lead to the generation of specialized compounds, identifying genes that control their biosynthesis and establishing a basis for modeling metabolism in less studied species. The database is publicly available and can be used by researchers in medicine and plant biology.

6.
Environ Sci Technol ; 45(7): 2917-24, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21381674

ABSTRACT

The increasing production and use of quantum dot (QD) nanoparticles have caused concerns on the possibility of contaminating the aquatic and terrestrial ecosystems with wastes that may contain QDs. Therefore, studies on the behavior of QDs upon interaction with components of the natural environment have become of interest. This study investigated the fluorescence and electrophoretic mobility of carboxylic or amine polyethylene glycol (PEG)-functionalized CdSe/ZnS QDs in the presence of two aquatic humic substances (HS), Suwannee River humic and fulvic acids, using capillary electrophoresis with laser-induced fluorescence detection. Results showed initial enhancement in fluorescence of QDs at the onset of the interaction with HS, followed by fluorescence quenching at longer exposure with HS (>30 min). It was also observed that the electrophoretic mobility of QDs increases with increasing concentration of HS, suggesting an increase in the ratio in charge to hydrodynamic size of the nanoparticles. To determine if the QDs degraded upon interaction with HS, the QD-HS mixtures were dialyzed to separate free Cd2+ from intact QDs, followed by analysis of the solutions using inductively coupled plasma-mass spectrometry. Results suggested that degradation of QDs in the presence of HS did not occur within the period of incubation.


Subject(s)
Benzopyrans/chemistry , Humic Substances , Quantum Dots , Water Pollutants, Chemical/chemistry , Electrophoresis, Capillary , Fluorescence , Hydrodynamics , Kinetics , Spectrometry, Fluorescence
7.
J Chromatogr Sci ; 47(1): 19-25, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19161652

ABSTRACT

In order to assess the efficiency of wastewater treatment plants in removing pharmaceuticals from wastewater, sensitive and reliable methods are necessary for trace analysis of these micropollutants in the presence of a highly complex matrix. In this study, conventional activated sludge (CAS) and membrane bioreactor (MBR) treatment systems are compared in eliminating pharmaceuticals in wastewater. The pharmaceuticals investigated include aceclofenac, carbamazepine, diclofenac, enalapril, and trimethoprim. Analysis is performed using a liquid chromatograph with hybrid linear ion-trap mass spectrometer equipped with a polar reversed-phase column to achieve good separation and minimize matrix effects. To pre-concentrate the samples, the use of two types of solid-phase extraction packing materials in tandem assures good recoveries of all the target analytes. In the influent, the concentration of these compounds ranges from 0.09 to 1.4 microg/L. Diclofenac shows resistance to degradation in the CAS but is amenable to degradation in the MBR. Trimethoprim and enalapril are only slightly eliminated in the CAS but are reduced by more than 95% in the MBR. Carbamazepine removal is negligible, while aceclofenac is only 50% reduced in CAS and MBR. In general, these results indicate that MBR has a higher efficiency in removing some polar pharmaceuticals in wastewater.


Subject(s)
Bioreactors , Pharmaceutical Preparations/analysis , Sewage/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Chromatography, Liquid , Membranes, Artificial , Pharmaceutical Preparations/isolation & purification , Sensitivity and Specificity , Solid Phase Extraction , Tandem Mass Spectrometry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification
8.
Anal Chem ; 78(6): 1866-74, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16536422

ABSTRACT

Identification of degradation products of environmental contaminants is a challenging task because not only are they present in very low concentrations but they are also mixed with complex matrixes that interfere with detection. This work illustrates a simple approach using ion trap mass spectrometry combined with H/D-exchange experiments to elucidate the structures of iopromide metabolites formed during biodegradation in activated sludge. Iopromide is an X-ray contrast agent that has been detected frequently in effluents of wastewater treatment plants and in surface waters due to its persistence and high usage. Three metabolites produced by oxidation of the primary alcohols (forming carboxylates) on the side chains of iopromide were identified in a batch reactor with mixed liquor from a conventional activated sludge. Derivatization of the carboxylic acid to form a methyl ester and interpretation of the MS2 data of this derivative aided in the confirmation of the identities of these metabolites. Furthermore, one metabolite formed by dehydroxylation at the two side chains was identified in a batch reactor with mixed liquor from a nitrifying activated sludge. The MS2 fragmentation pattern of iopromide and its metabolites revealed that the iodinated ring remains intact and that minor transformations in the structure occur during biodegradation of iopromide in biological wastewater treatment plants.


Subject(s)
Iohexol/analogs & derivatives , Sewage/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Alcohols/chemistry , Biodegradation, Environmental , Chromatography, Liquid/methods , Contrast Media/analysis , Contrast Media/metabolism , Iohexol/analysis , Iohexol/metabolism , Molecular Structure , Oxidation-Reduction , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...