Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 42(5): 925-35, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24331604

ABSTRACT

The Australian tree Melaleuca quinquenervia (Cavanilles) Blake is an invasive weed in wetland systems of Florida. A biological control program targeting M. quinquenervia has resulted in the release of the gall forming midge Lophodiplosis trifida Gagné (Diptera: Cecidomyiidae). Populations of the introduced herbivore readily established at all 24 release sites across the weed's range in Florida, and there was no evidence that founding colony size (100, 2,000, or 6,000 adults) influenced herbivore establishment or local population growth rates. Landscape level spread of L. trifida from release sites averaged nearly 6 km/yr, ranging as high as 14.4 km/yr. Prerelease host range testing predicted that L. trifida oviposits indiscriminately on test plant species but does not complete development on any of the test species, including congeners present in Florida. To test the predictability of these host range tests, L. trifida was released in a common garden consisting of 18 test plant species that were interplanted with M. quinquenervia. Plant species postulated to be at risk experienced no gall development by L. trifida while intermingled M. quinquenervia trees supported 704.8 (± 158.5) galls per plant. Historically, many introduced Cecidomyiidae have limited effect on plant performance of target weeds because of recruitment of native parasitoids that disrupt biological control efficacy. In contrast to this trend, there has been no evidence to date that parasitoids are exploiting L. trifida in Florida.


Subject(s)
Biological Control Agents , Diptera/physiology , Food Chain , Melaleuca/physiology , Pest Control, Biological , Animal Distribution , Animals , Diptera/growth & development , Female , Florida , Introduced Species , Larva/growth & development , Larva/physiology , Male , Melaleuca/growth & development , Population Dynamics
2.
Plant Dis ; 94(9): 1165, 2010 Sep.
Article in English | MEDLINE | ID: mdl-30743705

ABSTRACT

Melaleuca quinquenervia (melaleuca) is an exotic invasive tree in Florida, Hawaii, and some Caribbean islands (1,2). Puccinia psidii (rust fungus) attacks melaleuca as well as other plants in a few genera of the Myrtaceae and Heteropyxidaceae, both members of the Myrtales (1,2). Disease occurs on succulent stems and foliage of melaleuca, causing twig dieback and defoliation (3). Melaleuca trees growing under similar field conditions exhibit susceptible or resistant reactions toward this fungus. To document this differential susceptibility of melaleuca to P. psidii, we visually evaluated 331 field-grown melaleuca trees from southeast Florida for occurrence of disease attributes: pustules (susceptible), nonpersistent halos (resistant), or asymptomatic (no macroscopic symptoms) conditions on leaves and succulent twigs during February and March when symptoms were at their peak. Percentages of trees manifesting susceptible, resistant, and asymptomatic responses to this fungus were 85.8, 13.0, and 1.2%, respectively. A screenhouse study was conducted to corroborate these observations by raising plants from composite seed sources and maintaining them in seven 3.8-liter plastic pots that were filled with commercial potting media. Nine to eleven plants per pot (with new foliage) were individually tagged, grown to 30 to 45 cm high, and spray inoculated (during February and March) with uredospores (~2 × 106/ml) obtained from melaleuca trees and suspended in water. Inoculated plants were placed on a screenhouse bench under infected trees and subjected to additional inoculum, thereby simulating field conditions. Evaluations made weekly during a 4-week period revealed that susceptible, resistant, and asymptomatic seedlings constituted 63.3, 33.6, and 3.2%, respectively, of the tagged plants. To assess the stability of these fungal and host attributes over time and space, we multiplied two P. psidii susceptible and two resistant plants from cuttings. We spray inoculated 6 to 13 rooted cuttings from each plant types with uredospores (0.8 to 2 × 106/ml) obtained from diseased melaleuca trees and suspended in water. These plants were incubated in a dew chamber for 72 to 96 h under 100% relative humidity at 19 to 23°C maintained with a 12-h fluorescent light cycle. After incubation, plants were placed randomly on a bench in a screenhouse (21 to 23°C) and evaluated weekly for symptom development during a 4-week experimental period. Noninoculated controls were maintained as well. The experiment was repeated twice. Foliage of the resistant plants developed a few incipient halos whereas 100% of the susceptible plants developed erupted uredinia and were defoliated in both replications. No detectable change in P. psidii virulence and melaleuca susceptibility patterns was observed. Despite wide host range within Myrtales, resistance to P. psidii exists within M. quinquenervia. Other P. psidii susceptible host systems of economic and environmental importance may have host/pathogen relationships similar to that of melaleuca and the selection of resistant individuals from their affected populations may be possible. Additional studies will be needed to ascertain the attributes of virulence or resistance in this rust fungus-melaleuca association. References: (1) M. Glen et al. Australas. Plant Pathol. 36:1, 2007. (2) P. D. Pratt et al. J. Aquat. Plant Manag. 45:8, 2007. (3) M. B. Rayachhetry et al. Biol. Control 22:38, 2001.

3.
Environ Entomol ; 38(4): 1145-54, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19689893

ABSTRACT

The invasive tree Melaleuca quinquenervia (Cav.) Blake is widely distributed throughout peninsular Florida and poses a significant threat to species diversity in the wetland systems of the Everglades. Mitigation of this threat includes the areawide release campaign of the biological control agents Oxyops vitiosa Pascoe and Boreioglycaspis melaleucae Moore. We summarize the results of this release effort and quantify the resulting geographic distribution of the herbivores as well as their regional impact on the target weed. A combined total of 3.3 million individual Melaleuca biological control agents have been redistributed to 407 locations and among 15 Florida counties. Surveys of the invaded area indicate that the geographic distribution of O. vitiosa encompasses 71% of the Melaleuca infestation. Although released 5 yr later, the distribution of B. melaleuca is slightly greater than its predecessor, with a range including 78% of the sampled Melaleuca stands. Melaleuca stands outside both biological control agents' distributions occurred primarily in the northern extremes of the tree's range. Strong positive association between herbivore species was observed, with the same density of both species occurring in 162 stands and no evidence of interspecific competition. Soil type also influenced the incidence of biological control agents and the distribution of their impacts. The odds of encountering O. vitiosa or B. melaleucae in cells dominated by sandy soils were 2.2 and 2.9 times more likely than those predominated by organically rich soils. As a result, a greater level of damage from both herbivores was observed for stands growing on sandy versus organic-rich soils.


Subject(s)
Hemiptera/physiology , Host-Parasite Interactions , Melaleuca/parasitology , Weevils/physiology , Animals , Florida , Geography
4.
Environ Entomol ; 36(2): 409-15, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17445376

ABSTRACT

Field observations suggested that the introduced Hydrilla verticillata (L.f.) Royle biological control agent, a stem weevil, Bagous hydrillae O'Brien, would feed on hydrilla tubers and stems, and a native species, Bagous restrictus LeConte, would feed on hydrilla stems. In choice tests, B. hydrillae readily oviposited in hydrilla tubers. Larval development of B. hydrillae in hydrilla tubers was similar to that in stems; greater adult biomass was attained and less time was needed to complete development when the larvae were fed tubers. Larvae of the hydrilla tuber weevil, B. affinis Hustache, did not complete development in hydrilla stems. Larvae of B. affinis completed development more rapidly when fed new compared with old hydrilla tubers. The native B. restrictus successfully completed development in hydrilla stems, although the larvae required slightly more time compared with the biocontrol agent, B. hydrillae. These findings indicated that feeding on tubers by B. hydrillae may benefit the species particularly when hydrilla stems are seasonably absent or unsuitable especially in more northern climates. In terms of hydrilla control, damage to tubers by this species constitutes a reduction in future infestations of hydrilla propagated by tubers. Finally, hydrilla is suitable to the native weevil, B. restrictus, because larvae completed development in hydrilla stems.


Subject(s)
Animal Feed , Hydrocharitaceae/parasitology , Oviposition/physiology , Pest Control, Biological/methods , Weevils/physiology , Animals , Biomass , Ecosystem , Female , Fresh Water , Host-Parasite Interactions , Larva/growth & development , Larva/physiology , Male , Population Surveillance , Species Specificity , Weevils/growth & development
5.
J Nematol ; 36(3): 249-62, 2004 Sep.
Article in English | MEDLINE | ID: mdl-19262813

ABSTRACT

The putative mutualism between different host-specific Fergusobia nematodes and Fergusonina flies is manifested in a variety of gall types involving shoot or inflorescence buds, individual flower buds, stems, or young leaves in the plant family Myrtaceae. Different types of galls in the early-to-middle stages of development, with host-specific species of Fergusobia/Fergusonina, were collected from Australian members of the subfamily Leptospermoideae (six species of Eucalyptus, two species of Corymbia, and seven species of broad-leaved Melaleuca). Galls were sectioned and histologically examined to assess morphological changes induced by nematode/fly mutualism. The different gall forms were characterized into four broad categories: (i) individual flower bud, (ii) terminal and axial bud, (iii) 'basal rosette' stem, and (iv) flat leaf. Gall morphology in all four types appeared to result from species-specific selection of the oviposition site and timing and number of eggs deposited in a particular plant host. In all cases, early parasitism by Fergusobia/Fergusonina involved several layers of uninucleate, hypertrophied cells lining the lumen of each locule (gall chamber where each fly larva and accompanying nematodes develop). Hypertrophied cells in galls were larger than normal epidermal cells, and each had an enlarged nucleus, nucleolus, and granular cytoplasm that resembled shoot bud gall cells induced by nematodes in the Anguinidae.

6.
Plant Dis ; 86(7): 813, 2002 Jul.
Article in English | MEDLINE | ID: mdl-30818585

ABSTRACT

Salvinia molesta Mitchell (giant salvinia) and S. minima Baker (common salvinia) are exotic aquatic ferns that have invaded drainage basins in Texas, Louisiana, Alabama, Arizona, California, Florida, Georgia, Hawaii, Mississippi, North Carolina, and Oklahoma (2). These ferns rapidly colonize bodies of water and form thick mats, displace native species, disrupt recreational activities like boating and fishing, block drainage and irrigation intakes, interfere with electricity generation, and degrade water quality (1). Patches of water-soaked lesions were observed on the pinnules and rachises of screenhouse-grown S. molesta plants in Florida. Mycelia spread centrifugally from these patches and caused diseased plants to disintegrate and sink. Brown-to-black sclerotia were formed on and around the disintegrated plants. A fungus was consistently isolated from symptomatic tissues of S. molesta plants. Seven-day-old cultures turned buff-colored and produced sclerotia on potato dextrose agar, while cultures on water agar were hyaline and produced black sclerotia. Both types of sclerotia were not differentiated into rind and medulla. The mycelia branched at right angles from the main hyphae, were constricted at the base of the angle, and had a septum after the constriction. Vegetative cells were multinucleate. The fungus was identified as Rhizoctonia solani Kühn (3,4). Koch's postulates were performed to confirm pathogenicity on S. molesta and S. minima. Seven-day-old cultures of R. solani that were grown in potato dextrose broth were filtered through four layers of cheesecloth and washed with distilled water. Fourteen grams of the mycelial residue was suspended in 28 ml of distilled water and macerated in a small blender for 30 s to obtain a mycelial suspension. Healthy S. molesta and S. minima plants grown in screenhouse-tanks were immersed in tap water supplemented with 1 drop per 4 liters of surfactant (Tween 80), rinsed thoroughly, and approximately 40 g of the plants was floated in plastic jars (18.5 cm diameter × 7.5 cm high) filled to a depth of 5 cm with tap water. Three jars each of S. molesta and S. minima were misted with 1.5 ml of the mycelial suspension. Individual jars were covered with a clear plastic lid with a 2.5-cm-diameter hole in the center for ventilation. These jars were placed in a growth chamber maintained at 28 (+1)°C and 12-h fluorescent light cycles. Typical water-soaked lesions appeared on pinnules within 3 to 7 days, spread rapidly, and resulted in disintegration of pinnules and rachises. R. solani was consistently reisolated from symptomatic tissues of both Salvinia species. To our knowledge, this is the first report confirming pathogenicity of R. solani on S. molesta and S. minima. This fungus should be further evaluated as a potential mycoherbicide for control of Salvinia species. References: (1) K. L. S. Harley and D. S. Mitchell. J. Aust. Inst. Agric. Sci. 47:67, 1981. (2) C. C. Jacono et al. Castanea 66:214, 2001. (3) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St. Paul, MN, 1991. (4) C. C. Tu and J. W. Kimbrough. Bot. Gaz. 139:454, 1978.

7.
J Nematol ; 33(4): 239-47, 2001 Dec.
Article in English | MEDLINE | ID: mdl-19265887

ABSTRACT

Fergusobia nematodes and Fergusonina flies are mutualists that cause a variety of gall types on myrtaceous plant buds and young leaves. The biology of an isolate of the gall complex was studied in its native range in Australia for possible use in southern Florida as a biological control agent against the invasive broad-leaved paperbark tree, Melaleuca quinquenervia. Timed studies with caged Fergusonina flies on young branches of M. quinquenervia revealed that females are synovigenic with lifetime fecundities of 183 +/- 42 (standard error; SE) eggs and longevities of 17 +/- 2 days. None of the male flies but all dissected female flies contained parasitic female nematodes (range = 3-15), nematode eggs (12-112), and nematode juveniles (78-1,750). Female flies deposited eggs (34 +/- 6; 8-77 per bud) and nematode juveniles (114 +/- 15; 44-207 per bud) into bud apices within 15 days. Histological sections of shoot buds suggested that nematodes induce the formation of hypertrophied, uninucleate plant cells prior to fly larval eclosion. Enlarged size, granular cytoplasm, and enlarged nucleus and nucleolus characterized these cells, which appeared similar to those of other species galled by nematodes in the Anguinidae. Observations of ovipositional behavior revealed that female Fergusonina sp. create diagnostic oviposition scars. The presence of these scars may facilitate recognition of host use during specificity screening.

SELECTION OF CITATIONS
SEARCH DETAIL
...