Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 13(9)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36135526

ABSTRACT

The potato/tomato psyllid Bactericera cockerelli is the Candidatus Liberibacter solanacearum bacterium vector that causes diseases in Solanaceae crops. Pest control is based on synthetic chemical insecticides, plant extracts, and natural enemies such as parasitoids. Tamarixia triozae feeds on nymphs of B. cockerelli, reaching up to 95% parasitism. This work aimed to evaluate the parasitic performance of T. triozae on tomato leaves with B. cockerelli N3 nymphs, using two domesticated (Floradade and Micro-Tom) and one Wild tomato variety. Several assays were completed to identify the parasitoid attraction toward un-infested plants (healthy) and infested plants (damaged) of three varieties. Parasitism preference and "Y" tube olfactometer tests were performed, respectively. The parasitism of Tamarixia triozae showed a preference toward plants of the Floradade variety by 44% compared with the other two varieties (p = 0.0003). T. triozae was more attracted to damaged plants of the Wild variety (p = 0.0523). Healthy plants of Floradade and Micro-Tom varieties attracted a higher proportion of parasitoids, except in the Wild variety, where T. triozae was more attracted to damaged plants. Taken together, the results of this study show that the domestication degree in tomato plants positively influenced the interactions between tomato plants and the parasitoid, T. triozae.

2.
ACS Synth Biol ; 10(5): 1116-1131, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33843211

ABSTRACT

Cell-free expression systems have drawn increasing attention as a tool to achieve complex biological functions outside of the cell. Several applications of the technology involve the delivery of functionality to challenging environments, such as field-forward diagnostics or point-of-need manufacturing of pharmaceuticals. To achieve these goals, cell-free reaction components are preserved using encapsulation or lyophilization methods, both of which often involve an embedding of components in porous matrices like paper or hydrogels. Previous work has shown a range of impacts of porous materials on cell-free expression reactions. Here, we explored a panel of 32 paperlike materials and 5 hydrogel materials for the impact on reaction performance. The screen included a tolerance to lyophilization for reaction systems based on both cell lysates and purified expression components. For paperlike materials, we found that (1) materials based on synthetic polymers were mostly incompatible with cell-free expression, (2) lysate-based reactions were largely insensitive to the matrix for cellulosic and microfiber materials, and (3) purified systems had an improved performance when lyophilized in cellulosic but not microfiber matrices. The impact of hydrogel materials ranged from completely inhibitory to a slight enhancement. The exploration of modulating the rehydration volume of lyophilized reactions yielded reaction speed increases using an enzymatic colorimetric reporter of up to twofold with an optimal ratio of 2:1 lyophilized reaction to rehydration volume for the lysate system and 1.5:1 for the purified system. The effect was independent of the matrices assessed. Testing with a fluorescent nonenzymatic reporter and no matrix showed similar improvements in both yields and reaction speeds for the lysate system and yields but not reaction speeds for the purified system. We finally used these observations to show an improved performance of two sensors that span reaction types, matrix, and reporters. In total, these results should enhance efforts to develop field-forward applications of cell-free expression systems.


Subject(s)
Cellulose/chemistry , Hydrogels/chemistry , Paper , Quartz/chemistry , Biosensing Techniques/methods , Cell-Free System , Cross-Linking Reagents/chemistry , Freeze Drying , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...