Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
J Circadian Rhythms ; 22: 2, 2024.
Article in English | MEDLINE | ID: mdl-38617710

ABSTRACT

Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.

2.
J Circadian Rhythms ; 22: 1, 2024.
Article in English | MEDLINE | ID: mdl-38617711

ABSTRACT

Circadian Biology intersects with diverse scientific domains, intricately woven into the fabric of organismal physiology and behavior. The rhythmic orchestration of life by the circadian clock serves as a focal point for researchers across disciplines. This retrospective examination delves into several of the scientific milestones that have fundamentally shaped our contemporary understanding of circadian rhythms. From deciphering the complexities of clock genes at a cellular level to exploring the nuances of coupled oscillators in whole organism responses to stimuli. The field has undergone significant evolution lately guided by genetics approaches. Our exploration here considers key moments in the circadian-research landscape, elucidating the trajectory of this discipline with a keen eye on scientific advancements and paradigm shifts.

3.
ISME J ; 17(8): 1224-1235, 2023 08.
Article in English | MEDLINE | ID: mdl-37217592

ABSTRACT

Permafrost underlies approximately one quarter of Northern Hemisphere terrestrial surfaces and contains 25-50% of the global soil carbon (C) pool. Permafrost soils and the C stocks within are vulnerable to ongoing and future projected climate warming. The biogeography of microbial communities inhabiting permafrost has not been examined beyond a small number of sites focused on local-scale variation. Permafrost is different from other soils. Perennially frozen conditions in permafrost dictate that microbial communities do not turn over quickly, thus possibly providing strong linkages to past environments. Thus, the factors structuring the composition and function of microbial communities may differ from patterns observed in other terrestrial environments. Here, we analyzed 133 permafrost metagenomes from North America, Europe, and Asia. Permafrost biodiversity and taxonomic distribution varied in relation to pH, latitude and soil depth. The distribution of genes differed by latitude, soil depth, age, and pH. Genes that were the most highly variable across all sites were associated with energy metabolism and C-assimilation. Specifically, methanogenesis, fermentation, nitrate reduction, and replenishment of citric acid cycle intermediates. This suggests that adaptations to energy acquisition and substrate availability are among some of the strongest selective pressures shaping permafrost microbial communities. The spatial variation in metabolic potential has primed communities for specific biogeochemical processes as soils thaw due to climate change, which could cause regional- to global- scale variation in C and nitrogen processing and greenhouse gas emissions.


Subject(s)
Microbiota , Permafrost , Permafrost/chemistry , Soil/chemistry , Soil Microbiology , Microbiota/genetics , Metagenome , Carbon/metabolism
4.
J Crustac Biol ; 43(4)2023 Dec.
Article in English | MEDLINE | ID: mdl-39309143

ABSTRACT

While several marine species exhibit biological rhythms of heart rate, gill ventilation, or locomotion, the relationship between these three measures in any species remains unexplored. The American horseshoe crab, Limulus polyphemus, Linnaeus, 1758, expresses circalunidian locomotor rhythms and circadian eye sensitivity rhythms but it is not clear if either heart and ventilation rates are controlled on a circadian or circatidal basis or the nature of the relationship between these three measures. The goal of this study was to determine the extent to which the heart and ventilation rates of Limulus polyphemus are coordinated with its endogenous rhythms of locomotion. To address this goal, rhythmic beating of the heart and movements of the gill plates were recorded in freely moving horseshoe crabs. Most animals exhibited robust circatidal rhythms of locomotion, heart rate, and ventilation that were highly correlated with each other over three weeks of continuous recording. These results are the first showing long term rhythms of all three measures in any marine species and suggest that heart rate and ventilation rhythms are coordinated in Limulus polyphemus both with each other, and with locomotion, and thus are all modulated on a tidal basis.

5.
Biol Bull ; 245(3): 152-160, 2023 Dec.
Article in English | MEDLINE | ID: mdl-39316742

ABSTRACT

AbstractBleeding of horseshoe crabs (Limulus polyphemus) for the biomedical industry can have both sublethal and lethal impacts. Bleeding induces a significant drop in the concentration of hemolymph hemocyanin, as well as decreased levels of activity. Furthermore, horseshoe crabs with low hemocyanin prior to being bled have been found to be more likely to die after the procedure. The goal of this project was to determine whether feeding horseshoe crabs after bleeding them could enhance the recovery of their hemocyanin levels and, in doing so, improve their physiological status. The feeds tested in separate experiments included (1) natural forage items, blue mussels (Mytilus edulis) or softshell clams (Mya arenaria); (2) a formulated diet containing green crabs (Carcinus maenas) and Limulus hemolymph; and (3) a modified commercially available shrimp (Litopenaeus vannamei) broodstock aquafeed. Horseshoe crabs (n = 63) were bled and then either fed or not fed, and their hemolymph hemocyanin concentrations were measured before they were bled and for the following 6-14 days. An additional 25 horseshoe crabs were treated in the same manner but not bled. In three experiments, horseshoe crabs that were fed consistently showed significantly higher hemolymph hemocyanin concentrations compared to those that were not fed. These data suggest that relatively simple modifications of the industrial bleeding procedure, such as feeding horseshoe crabs after bleeding them, may improve their physiological status prior to release.


Subject(s)
Hemocyanins , Horseshoe Crabs , Animals , Horseshoe Crabs/physiology , Hemocyanins/metabolism , Hemolymph/chemistry , Hemorrhage/physiopathology , Animal Feed/analysis
6.
Biol Bull ; 236(3): 207-223, 2019 06.
Article in English | MEDLINE | ID: mdl-31167088

ABSTRACT

Horseshoe crabs are harvested by the biomedical industry in order to create Limulus amebocyte lysate to test medical devices and pharmaceutical drugs for endotoxins. Most previous studies on the impacts of the biomedical bleeding process on horseshoe crabs have focused on mortality rates and sublethal impacts in the laboratory. In this study, we investigated the effects of the bleeding process on the behavior of horseshoe crabs after they had been released back into their natural environment. A total of 28 horseshoe crabs (14 control and 14 bled) were fitted with acoustic transmitters and released into the Great Bay Estuary, New Hampshire, during the spring of 2016. The acoustic tags transmitted information about the activity and depth of each animal, and these data were logged by an array of passive acoustic receivers. These data were collected from May to December 2016 and from March to October 2017. Bled animals approached mating beaches less than control animals during the first week after release, with the greatest differences between bled and control females. Bled animals also remained significantly deeper during the spawning season than control animals. However, overall, bled and control animals expressed similar biological rhythms and seasonal migrations. Thus, it appears as if the most obvious impacts of the bleeding process take place during the first one to two weeks after crabs are bled.


Subject(s)
Hemolymph/physiology , Horseshoe Crabs/physiology , Animal Migration/physiology , Animals , Behavior, Animal/physiology , Ecosystem , New Hampshire , Periodicity , Seasons
7.
Mar Biol ; 1642017 Apr.
Article in English | MEDLINE | ID: mdl-29051673

ABSTRACT

While horseshoe crabs Limulus polyphemus from regions with two daily tides express endogenous circatidal (~ 12.4 h) activity rhythms, much less is known about locomotor rhythm expression in horseshoe crabs from other tidal regimes. This study investigated whether horseshoe crabs (1) always express activity rhythms consistent with their natural tides, and (2) can alter activity rhythm expression in response to novel tide cycles. Activity rhythms of animals from environments with two daily tides (Gulf of Maine, 43°6' N/70°52' W, and Massachusetts, 41°32' N/70°40'W), one dominant daily tide (Apalachee Bay, Florida, 29°58' N/84°20' W), and microtides (Indian River Lagoon, Florida, 28°5' N/80°35' W) were recorded in 2011-2013 during three artificial tide conditions: no tides, a 12.4 h tidal cycle, and a 24.8 h tidal cycle. Interestingly, L. polyphemus from the microtidal site (n = 7) appeared "plastic" in their responses; they were able to express both bimodal and unimodal rhythms in response to different tide cycles. In contrast, the other two populations exhibited more fixed responses: regardless of the tides they were exposed to, animals from areas with one dominant daily tide (n = 18) consistently expressed unimodal rhythms, while those from areas with two daily tides (n = 28) generally expressed bimodal rhythms. Rhythms expressed by L. polyphemus thus appear to be a function of endogenous clocks, the tidal cues to which animals are exposed, and tidal cues that animals experience throughout ontogeny.

8.
Int J Genomics ; 2017: 7636513, 2017.
Article in English | MEDLINE | ID: mdl-28265565

ABSTRACT

The horseshoe crab, Limulus polyphemus, exhibits robust circadian and circatidal rhythms, but little is known about the molecular mechanisms underlying those rhythms. In this study, horseshoe crabs were collected during the day and night as well as high and low tides, and their muscle and central nervous system tissues were processed for genome and transcriptome sequencing, respectively. The genome assembly resulted in 7.4 × 105 contigs with N50 of 4,736, while the transcriptome assembly resulted in 9.3 × 104 contigs and N50 of 3,497. Analysis of functional completeness by the identification of putative universal orthologs suggests that the transcriptome has three times more total expected orthologs than the genome. Interestingly, RNA-Seq analysis indicated no statistically significant changes in expression level for any circadian core or accessory gene, but there was significant cycling of several noncircadian transcripts. Overall, these assemblies provide a resource to investigate the Limulus clock systems and provide a large dataset for further exploration into the taxonomy and biology of the Atlantic horseshoe crab.

9.
Mar Freshw Behav Physiol ; 49(2): 75-91, 2016.
Article in English | MEDLINE | ID: mdl-27559270

ABSTRACT

While many intertidal animals exhibit circatidal rhythms, the nature of the underlying endogenous clocks that control these rhythms has been controversial. In this study American horseshoe crabs, Limulus polyphemus, were used to test the circalunidian hypothesis by exposing them to four different tidal regimes. Overall, the results obtained support the circalunidian hypothesis: each of the twice-daily rhythms of activity appears to be controlled by a separate clock, each with an endogenous period of approximately 24.8h. First, spontaneous "skipping" of one of the daily bouts was observed under several different conditions. Second, the presence of two bouts of activity/day, with different periods, was observed. Lastly, we were able to separately synchronize bouts of activity to two artificial tidal regimes with different periods. These results, taken together, argue in favor of two separate circalunidian clocks in Limulus, each of which controls one of the two bouts of their daily tidal activity rhythms.

10.
Article in English | MEDLINE | ID: mdl-27341138

ABSTRACT

While the American horseshoe crab, Limulus polyphemus, has robust circadian and circatidal rhythms, virtually nothing is known about the molecular basis of these rhythms in this species or any other chelicerate. In this study, next generation sequencing was used to assemble transcriptomic reads and then putative homologs of known core and accessory circadian genes were identified in these databases. Homologous transcripts were discovered for one circadian clock input gene, five core genes, 22 accessory genes, and two possible output pathways. Alignments and functional domain analyses showed generally high conservation between the putative L. polyphemus clock genes and homologs from Drosophila melanogaster and Daphnia pulex. The presence of both cry1 and cry2 in the L. polyphemus transcriptome would classify its system as an "ancestral", type 2 clock system. In addition, a novel duplication of CYCLE, and a novel triplication of PERIOD were found. Investigations are currently underway to determine if any of these "circadian" genes also participate in the molecular processes that drive the Limulus circatidal clock.


Subject(s)
CLOCK Proteins/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing/methods , Horseshoe Crabs/genetics , Transcriptome , Amino Acid Sequence , Animals , Evolution, Molecular , Genomics , Horseshoe Crabs/growth & development , Molecular Sequence Annotation , Phylogeny , Sequence Homology, Amino Acid
11.
Biol Bull ; 225(1): 42-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24088795

ABSTRACT

Adult American horseshoe crabs, Limulus polyphemus, possess endogenous circadian and circatidal clocks controlling visual sensitivity and locomotion, respectively. The goal of this study was to determine the types of activity rhythms expressed by juvenile horseshoe crabs (n = 24) when exposed to a 14:10 light/dark cycle (LD) for 10 days, followed by 10 days of constant darkness (DD). Horseshoe crab activity was recorded with a digital time-lapse video system that used an infrared-sensitive camera so animals could be monitored at night. In LD, 15 animals expressed daily patterns of activity, 6 displayed a circatidal pattern, and the remaining 3 were arrhythmic. Of the 15 animals with daily patterns of locomotion, 7 had a significant preference (P < 0.05) for diurnal activity and 3 for nocturnal activity; the remainder did not express a significant preference for day or night activity. In DD, 13 horseshoe crabs expressed circatidal rhythms and 8 maintained a pattern of about 24 h. Although these results suggest the presence of a circadian clock influencing circatidal patterns of locomotion, these apparent circadian rhythms may actually represent the expression of just one of the two bouts of activity driven by the putative circalunidian clocks that control their tidal rhythms. Overall, these results indicate that, like adults, juvenile horseshoe crabs express both daily and tidal patterns of activity and that at least one, and maybe both, of these patterns is driven by endogenous clocks.


Subject(s)
Behavior, Animal , Circadian Rhythm , Horseshoe Crabs/physiology , Animals , Horseshoe Crabs/growth & development , Life Cycle Stages/physiology , Photoperiod
12.
Biol Bull ; 225(3): 137-51, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24445440

ABSTRACT

The hemolymph of the American horseshoe crab, Limulus polyphemus, is harvested from over 500,000 animals annually to produce Limulus amebocyte lysate (LAL), a medically important product used to detect pathogenic bacteria. Declining abundance of spawning Limulus females in heavily harvested regions suggests deleterious effects of this activity, and while mortality rates of the harvest process are known to be 10%-30%, sublethal behavioral and physiological effects are not known. In this study, we determined the impact of the harvest process on locomotion and hemocyanin levels of 28 female horseshoe crabs. While mortality rates after bleeding (18%) were similar to previous studies, we found significant decreases in the linear and angular velocity of freely moving animals, as well as changes in their activity levels and expression of circatidal behavioral rhythms. Further, we found reductions in hemocyanin levels, which may alter immune function and cuticle integrity. These previously unrecognized behavioral and physiological deficits suggest that the harvest of LAL may decrease female fitness, and thus may contribute to the current population decline.


Subject(s)
Behavior, Animal/physiology , Hemorrhage/veterinary , Horseshoe Crabs/physiology , Animals , Circadian Rhythm/physiology , Hemocyanins/analysis , Hemolymph/physiology , Hemorrhage/mortality , Horseshoe Crabs/immunology , Population Dynamics , United States
13.
J Circadian Rhythms ; 10(1): 6, 2012 Sep 09.
Article in English | MEDLINE | ID: mdl-22958374

ABSTRACT

BACKGROUND: An endogenous circadian clock controls locomotor activity in common spiny mice (Acomys cahirinus). However, little is known about the effects of constant light (LL) on this activity or about the existence of an additional food entrainable clock. A series of experiments were performed to investigate the effects of LL and DD on tau and activity levels. METHODS: Spiny mice were housed individually and their running wheel activity monitored. One group of mice was exposed to LD, DD and several intensities of LL. Another group was exposed to a restricted feeding (RF) paradigm in light: dark (LD) during one hour before the L to D transition. Significance of rhythmicity was assessed using Lomb-Scargle periodograms. RESULTS: In LD all animals exhibited nocturnal activity rhythms that persisted in DD. When animals were exposed to RF (during L), all of these animals (n = 11) demonstrated significant food anticipatory activity as well as an increase in diurnal activity. This increase in diurnal activity persisted in 4/11 animals during subsequent ad libitum conditions. Under LL conditions, the locomotor rhythms of 2/11 animals appeared to entrain to RF. When animals were exposed to sequentially increasing LL intensities, rhythmicity persisted and, while activity decreased significantly, the free-running period was relatively unaffected. In addition, the period in LL was significantly longer than the period in DD. Exposure to LL also induced long-term changes (after-effects) on period and activity when animals were again exposed to DD. CONCLUSIONS: Overall these studies demonstrate clear and robust circadian rhythms of wheel-running in A. cahirinus. In addition, LL clearly inhibited activity in this species and induced after-effects. The results also confirm the presence of a food entrainable oscillator in this species.

14.
Mar Freshw Behav Physiol ; 45(4): 269-279, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-23487569

ABSTRACT

The daily rhythm of PERIOD protein (PER) expression is an integral component of the circadian clock, which is found among a broad range of animal species including fruit flies, marine mollusks and even humans. The use of antibodies directed against PER has provided a helpful tool in the discovery of PER homologues and the labeling of putative pacemaker cells, especially in animals for which an annotated genome is not readily available. In this study, DrosophilaPER antibodies were used to probe for PER in the American lobster, Homarus americanus. This species exhibits robust endogenous circadian rhythms but the circadian clock has yet to be located or characterized. PER was detected in the eyestalks of the lobster but not in the brain. Furthermore, a significant effect of the LD cycle on daily PER abundance was identified, and PER was significantly more abundant at mid dark than in early light or mid light hours. Our results suggest that PER is a part of the molecular machinery of the circadian clock located in the eyestalk of the lobster.

15.
Biol Bull ; 215(1): 34-45, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18723635

ABSTRACT

Limulus polyphemus, the American horseshoe crab, has an endogenous clock that drives circatidal rhythms of locomotor activity. In this study, we examined the ability of artificial tides to entrain the locomotor rhythms of Limulus in the laboratory. In experiments one and two, the activity of 16 individuals of L. polyphemus was monitored with activity boxes and "running wheels." When the crabs were exposed to artificial tides created by changes in water depth, circatidal rhythms were observed in animals exposed to 12.4-h "tidal" cycles of either water depth changes (8 of 8 animals) or inundation (7 of 8 animals). In experiment three, an additional 8 animals were exposed to water depth changes under cyclic conditions of light and dark and then monitored for 10 days with no imposed artificial tides. Most animals (5) clearly synchronized their activity to the imposed artificial tidal cycles, and 3 of these animals showed clear evidence of entrainment after the artificial tides were terminated. Overall, these results demonstrate that the endogenous tidal clock that influences locomotion in Limulus can be entrained by imposed artificial tides. In the laboratory, these tidal cues override the influence of light/dark cycles. In their natural habitat, where both tidal and photoperiod inputs are typically always present, their activity rhythms are likely to be much more complex.


Subject(s)
Biological Clocks , Horseshoe Crabs/physiology , Locomotion , Animals , Circadian Rhythm , Photoperiod , Water
16.
Biol Bull ; 215(1): 46-56, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18723636

ABSTRACT

In the laboratory, horseshoe crabs express a circadian rhythm of visual sensitivity as well as daily and circatidal rhythms of locomotion. The major goal of this investigation was to determine whether the circadian clock underlying changes in visual sensitivity also modulates locomotion. To address this question, we developed a method for simultaneously recording changes in visual sensitivity and locomotion. Although every animal (24) expressed consistent circadian rhythms of visual sensitivity, rhythms of locomotion were more variable: 44% expressed a tidal rhythm, 28% were most active at night, and the rest lacked statistically significant rhythms. When exposed to artificial tides, 8 of 16 animals expressed circatidal rhythms of locomotion that continued after tidal cycles were stopped. However, rhythms of visual sensitivity remained stable and showed no tendency to be influenced by the imposed tides or locomotor activity. These results indicate that horseshoe crabs possess at least two biological clocks: one circadian clock primarily used for modulating visual sensitivity, and one or more clocks that control patterns of locomotion. This arrangement allows horseshoe crabs to see quite well while mating during both daytime and nighttime high tides.


Subject(s)
Biological Clocks , Circadian Rhythm , Horseshoe Crabs/physiology , Locomotion , Vision, Ocular , Animals , Electroretinography , Photoperiod , Water
SELECTION OF CITATIONS
SEARCH DETAIL