Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Trop Med Infect Dis ; 9(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38251217

ABSTRACT

This study evaluated the impact of combining house screens with long-lasting insecticidal nets (LLINs) on mosquito host-seeking, resting, and biting behavior. Intervention houses received house screens and LLINs, while control houses received only LLINs. Centre for Disease Control light traps, pyrethrum spray collections and human landing catches were used to assess the densities of indoor and outdoor host-seeking, indoor resting, and biting behavior of malaria vectors in 15 sentinel houses per study arm per sampling method. The protective efficacy of screens and LLINs was estimated through entomological inoculation rates (EIRs). There were 68% fewer indoor host-seeking Anopheles funestus (RR = 0.32, 95% CI 0.20-0.51, p < 0.05) and 63% fewer An. arabiensis (RR = 0.37, 95% CI 0.22-0.61, p < 0.05) in screened houses than unscreened houses. There was a significantly higher indoor biting rate for unscreened houses (6.75 bites/person/h [b/p/h]) than for screened houses (0 b/p/h) (χ2 = 6.67, df = 1, p < 0.05). The estimated indoor EIR in unscreened houses was 2.91 infectious bites/person/six months, higher than that in screened houses (1.88 infectious bites/person/six months). Closing eaves and screening doors and windows has the potential to reduce indoor densities of malaria vectors and malaria transmission.

2.
BMC Public Health ; 24(1): 285, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267927

ABSTRACT

BACKGROUND: House screening remains conspicuously absent in national malaria programs despite its recognition by the World Health Organization as a supplementary malaria vector-control intervention. This may be attributed, in part, to the knowledge gap in screen durability or longevity in local climatic conditions and community acceptance under specific cultural practices and socio-economic contexts. The objectives of this study were to assess the durability of window and door wire mesh screens a year after full house screening and to assess the acceptability of the house screening intervention to the participants involved. METHODS: This study was conducted in Nyimba district, Zambia and used both quantitative and qualitative methods of data collection and analysis. Both direct observation and questionnaires were employed to assess the durability of the screens and the main reasons for damage. Findings on damage were summarized as percentages. Focus group discussions were used to assess people's knowledge, perceptions, and acceptability of the closing eaves and house screening intervention. Deductive coding and inductive coding were used to analyse the qualitative data. RESULTS: A total of 321 out of 400 (80.3%) household owners of screened houses were interviewed. Many window screens (90.3%) were intact. In sharp contrast, most door screens were torn (n = 150; 46.7%) or entirely removed (n = 55; 17.1%). Most doors (n = 114; 76%) had their wire mesh damaged or removed on the bottom half. Goats (25.4%), rust (17.6%) and children (17.1%) were cited most as the cause of damage to door screens. The focus group discussion elicited positive experiences from the participants following the closing of eaves and screening of their windows and doors, ranging from sleeping peacefully due to reduced mosquito biting and/or nuisance and having fewer insects in the house. Participants linked house screening to reduced malaria in their households and community. CONCLUSION: This study demonstrated that in rural south-east Zambia, closing eaves and screening windows and doors was widely accepted. Participants perceived that house screening reduced human-vector contact, reduced the malaria burden and nuisance biting from other potentially disease carrying insects. However, screened doors are prone to damage, mainly by children, domestic animals, rust, and termites.


Subject(s)
Anopheles , Eczema , Malaria , Animals , Child , Humans , Malaria/prevention & control , Mosquito Vectors , Zambia/epidemiology , Data Accuracy
3.
Parasit Vectors ; 16(1): 129, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37059998

ABSTRACT

This meeting report presents the key findings and discussion points of a 3-h virtual workshop, held on 21 September 2022, and organized by the "Resilience Against Future Threats through Vector Control (RAFT)" research consortium. The workshop aimed to identify priorities for advancing arbovirus research, network and capacity strengthening in Africa. Due to increasing human population growth, urbanization and global movement (trade, tourism, travel), mosquito-borne arboviral diseases, such as dengue, Chikungunya and Zika, are increasing globally in their distribution and prevalence. This report summarizes the presentations that reviewed the current status of arboviruses in Africa, including: (i) key findings from the recent WHO/Special Programme for Research & Training in Tropical Diseases (WHO/TDR) survey in 47 African countries that revealed deep and widespread shortfalls in the capacity to cope with arbovirus outbreak preparedness, surveillance and control; (ii) the value of networking in this context, with examples of African countries regarding arbovirus surveillance; and (iii) the main priorities identified by the breakout groups on "research gaps", "networks" and "capacity strengthening".


Subject(s)
Aedes , Arbovirus Infections , Arboviruses , Chikungunya Fever , Dengue , Zika Virus Infection , Zika Virus , Animals , Humans , Arbovirus Infections/epidemiology , Arbovirus Infections/prevention & control , Mosquito Vectors
4.
Malar J ; 22(1): 95, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36927373

ABSTRACT

BACKGROUND: The primary malaria vector-control interventions, indoor residual spraying and long-lasting insecticidal nets, are effective against indoor biting and resting mosquito species. Consequently, outdoor biting and resting malaria vectors might elude the primary interventions and sustain malaria transmission. Varied vector biting and resting behaviour calls for robust entomological surveillance. This study investigated the bionomics of malaria vectors in rural south-east Zambia, focusing on species composition, their resting and host-seeking behaviour and sporozoite infection rates. METHODS: The study was conducted in Nyimba District, Zambia. Randomly selected households served as sentinel houses for monthly collection of mosquitoes indoors using CDC-light traps (CDC-LTs) and pyrethrum spray catches (PSC), and outdoors using only CDC-LTs for 12 months. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus group were further identified using molecular techniques. Plasmodium falciparum sporozoite infection was determined using sandwich enzyme-linked immunosorbent assays. RESULTS: From 304 indoor and 257 outdoor light trap-nights and 420 resting collection, 1409 female Anopheles species mosquitoes were collected and identified morphologically; An. funestus (n = 613; 43.5%), An. gambiae sensu lato (s.l.)(n = 293; 20.8%), Anopheles pretoriensis (n = 282; 20.0%), Anopheles maculipalpis (n = 130; 9.2%), Anopheles rufipes (n = 55; 3.9%), Anopheles coustani s.l. (n = 33; 2.3%), and Anopheles squamosus (n = 3, 0.2%). Anopheles funestus sensu stricto (s.s.) (n = 144; 91.1%) and Anopheles arabiensis (n = 77; 77.0%) were the dominant species within the An. funestus group and An. gambiae complex, respectively. Overall, outdoor CDC-LTs captured more Anopheles mosquitoes (mean = 2.25, 95% CI 1.22-3,28) than indoor CDC-LTs (mean = 2.13, 95% CI 1.54-2.73). Fewer resting mosquitoes were collected with PSC (mean = 0.44, 95% CI 0.24-0.63). Sporozoite infectivity rates for An. funestus, An. arabiensis and An. rufipes were 2.5%, 0.57% and 9.1%, respectively. Indoor entomological inoculation rates (EIRs) for An. funestus s.s, An. arabiensis and An. rufipes were estimated at 4.44, 1.15 and 1.20 infectious bites/person/year respectively. Outdoor EIRs for An. funestus s.s. and An. rufipes at 7.19 and 4.31 infectious bites/person/year, respectively. CONCLUSION: The findings of this study suggest that An. rufipes may play an important role in malaria transmission alongside An. funestus s.s. and An. arabiensis in the study location.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria , Pyrethrins , Animals , Humans , Female , Zambia , Mosquito Vectors , Feeding Behavior , Malaria, Falciparum/epidemiology , Sporozoites
5.
Malar J ; 21(1): 279, 2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36184603

ABSTRACT

BACKGROUND: Countries in the southern Africa region have set targets for malaria elimination between 2020 and 2030. Malaria vector control is among the key strategies being implemented to achieve this goal. This paper critically reviews published entomological research over the past six decades in three frontline malaria elimination countries namely, Botswana Eswatini and Namibia, and three second-line malaria elimination countries including Mozambique, Zambia, and Zimbabwe. The objective of the review is to assess the current knowledge and highlight gaps that need further research attention to strengthen evidence-based decision-making toward malaria elimination. METHODS: Publications were searched on the PubMed engine using search terms: "(malaria vector control OR vector control OR malaria vector*) AND (Botswana OR Swaziland OR Eswatini OR Zambia OR Zimbabwe OR Mozambique)". Opinions, perspectives, reports, commentaries, retrospective analysis on secondary data protocols, policy briefs, and reviews were excluded. RESULTS: The search resulted in 718 publications with 145 eligible and included in this review for the six countries generated over six decades. The majority (139) were from three countries, namely Zambia (59) and Mozambique (48), and Zimbabwe (32) whilst scientific publications were relatively scanty from front-line malaria elimination countries, such as Namibia (2), Botswana (10) and Eswatini (4). Most of the research reported in the publications focused on vector bionomics generated mostly from Mozambique and Zambia, while information on insecticide resistance was mostly available from Mozambique. Extreme gaps were identified in reporting the impact of vector control interventions, both on vectors and disease outcomes. The literature is particularly scanty on important issues such as change of vector ecology over time and space, intervention costs, and uptake of control interventions as well as insecticide resistance. CONCLUSIONS: The review reveals a dearth of information about malaria vectors and their control, most noticeable among the frontline elimination countries: Namibia, Eswatini and Botswana. It is of paramount importance that malaria vector research capacity and routine entomological monitoring and evaluation are strengthened to enhance decision-making, considering changing vector bionomics and insecticide resistance, among other determinants of malaria vector control.


Subject(s)
Anopheles , Malaria , Africa, Southern , Animals , Humans , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors , Retrospective Studies
6.
Sci Rep ; 11(1): 23867, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34903838

ABSTRACT

Insecticides have played a major role in the prevention, control, and elimination of vector-borne diseases, but insecticide resistance threatens the efficacy of available vector control tools. A global survey was conducted to investigate vector control insecticide use from 2010 to 2019. Out of 140 countries selected as sample for the study, 87 countries responded. Also, data on ex-factory deliveries of insecticide-treated nets (ITNs) were analyzed. Insecticide operational use was highest for control of malaria, followed by dengue, leishmaniasis and Chagas disease. Vector control relied on few insecticide classes with pyrethroids the most used overall. Results indicated that IRS programs have been slow to react to detection of pyrethroid resistance, while proactive resistance management using insecticides with unrelated modes of action was generally weak. The intensive use of recently introduced insecticide products raised concern about product stewardship regarding the preservation of insecticide susceptibility in vector populations. Resistance management was weakest for control of dengue, leishmaniasis or Chagas disease. Therefore, it will be vital that vector control programs coordinate on insecticide procurement, planning, implementation, resistance monitoring, and capacity building. Moreover, increased consideration should be given to alternative vector control tools that prevent the development of insecticide resistance.


Subject(s)
Equipment and Supplies Utilization/trends , Insect Control/trends , Insect Vectors/drug effects , Insecticide Resistance , Insecticides/classification , Vector Borne Diseases/prevention & control , Animals , Humans , Insect Control/methods , Insecticides/supply & distribution , Mosquito Nets/statistics & numerical data , Vector Borne Diseases/epidemiology
7.
Trials ; 22(1): 883, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34872600

ABSTRACT

BACKGROUND: Concerted effort to control malaria has had a substantial impact on the transmission of the disease in the past two decades. In areas where reduced malaria transmission is being sustained through insecticide-based vector control interventions, primarily long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), non-insecticidal complementary tools will likely be needed to push towards malaria elimination. Once interruption in local disease transmission is achieved, insecticide-based measures can be scaled down gradually and eventually phased out, saving on costs of sustaining control programs and mitigating any unintended negative health and environmental impacts posed by insecticides. These non-insecticidal methods could eventually replace insecticidal methods of vector control. House screening, a non-insecticidal method, has a long history in malaria control, but is still not widely adopted in sub-Saharan Africa. This study aims to add to the evidence base for this intervention in low transmission settings by assessing the efficacy, impact, and feasibility of house screening in areas where LLINs are conventionally used for malaria control. METHODS: A two-armed, household randomized clinical trial will be conducted in Mozambique, Zambia, and Zimbabwe to evaluate whether combined the use of house screens and LLINs affords better protection against clinical malaria in children between 6 months and 13 years compared to the sole use of LLINs. Eight hundred households will be enrolled in each study area, where 400 households will be randomly assigned the intervention, house screening, and LLINs while the control households will be provided with LLINs only. Clinical malaria incidence will be estimated by actively following up one child from each household for 6 months over the malaria transmission season. Cross-sectional parasite prevalence will be estimated by testing all participating children for malaria parasites at the beginning and end of each transmission season using rapid diagnostic tests. CDC light traps and pyrethrum spray catches (PSC) will be used to sample adult mosquitoes and evaluate the impact of house screening on indoor mosquito density, species distribution, and sporozoite rates. DISCUSSION: This study will contribute epidemiological data on the impact of house screening on malaria transmission and assess the feasibility of its implementation on a programmatic scale. TRIAL REGISTRATION: ClinicalTrials.gov PACTR202008524310568 . Registered on August 11, 2020.


Subject(s)
Insecticide-Treated Bednets , Malaria , Adult , Africa, Southern , Animals , Child , Cross-Sectional Studies , Feasibility Studies , Humans , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Randomized Controlled Trials as Topic
8.
Parasit Vectors ; 14(1): 588, 2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34838095

ABSTRACT

This letter comments on the article "Emergence of the invasive malaria vector Anopheles stephensi in Khartoum State, Central Sudan" published in Parasites and Vectors 2021, 14:511. Here we aim of provide a response to this paper in the broader context of the invasion and spread of An. stephensi in the Horn of Africa, and the required response to it. We agree with the authors that the arrival of this invasive vector in Khartoum State is of high public health concern. Equally concerning, however, we found that the detection of the vector by the authors in 2018 seemingly took 3 years to communicate to the Ministry of Health and World Health Organization (WHO), and was reliant on an academic journal. We consider that this short report sets a poor example of how public health threats should be reported. Suitable communication alternatives to alert public health authorities to such threats have been put in place by the WHO and its Member States, and are well known to at least some of the authors of the short report. We would like to encourage all readers not to follow the example of Ahmed et al. but instead act as responsible public health professionals by drawing on the established reporting mechanisms and escalate potential threats as soon as they are identified.


Subject(s)
Anopheles , Introduced Species , Malaria/transmission , Animals , Disease Vectors , Humans , Mosquito Control , Mosquito Vectors , Sudan/epidemiology
9.
BMC Infect Dis ; 21(1): 468, 2021 May 22.
Article in English | MEDLINE | ID: mdl-34022823

ABSTRACT

BACKGROUND: Vector control plays a critical role in the prevention, control and elimination of vector-borne diseases, and interventions of vector control continue to depend largely on the action of chemical insecticides. A global survey was conducted on the management practices of vector control insecticides at country level to identify gaps to inform future strategies on pesticide management, seeking to improve efficacy of interventions and reduce the side-effects of chemicals used on health and the environment. METHODS: A survey by questionnaire on the management practices of vector control insecticides was disseminated among all WHO Member States. Data were analysed using descriptive statistics in MS Excel. RESULTS: Responses were received from 94 countries, or a 48% response rate. Capacity for insecticide resistance monitoring was established in 68-80% of the countries in most regions, often with external support; however, this capacity was largely lacking from the European & Others Region (i.e. Western & Eastern Europe, North America, Australia and New Zealand). Procurement of vector control insecticides was in 50-75% of countries taking place by agencies other than the central-level procuring agency, over which the central authorities lacked control, for example, to select the product or assure its quality, highlighting the importance of post-market monitoring. Moreover, some countries experienced problems with estimating the correct amounts for procurement, especially for emergency purposes. Large fractions (29-78%) of countries across regions showed shortcomings in worker safety, pesticide storage practices and pesticide waste disposal. Shortcomings were most pronounced in countries of the European & Others Region, which has long been relatively free from mosquito-borne diseases but has recently faced challenges of re-emerging vector-borne diseases. CONCLUSIONS: Critical shortcomings in the management of vector control insecticides are common in countries across regions, with risks of adverse pesticide effects on health and the environment. Advocacy and resource mobilization are needed at regional and country levels to address these challenges.


Subject(s)
Disease Vectors , Global Health , Insecticide Resistance/drug effects , Insecticides/pharmacology , Mosquito Control/methods , Vector Borne Diseases/epidemiology , Vector Borne Diseases/prevention & control , Animals , Asia/epidemiology , Epidemiological Monitoring , Europe/epidemiology , Humans , North America/epidemiology , South America/epidemiology , Surveys and Questionnaires
10.
Malar J ; 20(1): 159, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33743727

ABSTRACT

Eswatini was the first country in sub-Saharan Africa to pass a National Malaria Elimination Policy in 2011, and later set a target for elimination by the year 2020. This case study aimed to review the malaria surveillance data of Eswatini collected over 8 years between 2012 and 2019 to evaluate the country's efforts that targeted malaria elimination by 2020. Coverage of indoor residual spraying (IRS) for vector control and data on malaria cases were provided by the National Malaria Programme (NMP) of Eswatini. The data included all cases treated for malaria in all health facilities. The data was analysed descriptively. Over the 8 years, a total of 5511 patients reported to the health facilities with malaria symptoms. The case investigation rate through the routine surveillance system increased from 50% in 2012 to 84% in 2019. Incidence per 1000 population at risk fluctuated over the years, but in general increased from 0.70 in 2012 to 1.65 in 2019, with the highest incidence of 3.19 reported in 2017. IRS data showed inconsistency in spraying over the 8 years. Most of the cases were diagnosed by rapid diagnostic test (RDT) kits in government (87.6%), mission (89.1%), private (87%) and company/industry-owned facilities (84.3%), either singly or in combination with microscopy. Eswatini has fallen short of achieving malaria elimination by 2020. Malaria cases are still consistently reported, albeit at low rates, with occasional localized outbreaks. To achieve elimination, it is critical to optimize timely and well-targeted IRS and to consider rational expansion of tools for an integrated malaria control approach in Eswatini by including tools such as larval source management, long-lasting insecticidal nets (LLINs), screening of mosquito house entry points, and chemoprophylaxis. The establishment of rigorous routine entomological surveillance should also be prioritized to determine the local malaria vectors' ecology, potential species diversity, the role of secondary vectors and insecticide resistance.


Subject(s)
Disease Eradication/statistics & numerical data , Epidemiological Monitoring , Malaria/prevention & control , Eswatini/epidemiology , Humans , Incidence , Malaria/epidemiology
12.
EClinicalMedicine ; 29-30: 100629, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33294824
13.
Malar J ; 19(1): 301, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32843037

ABSTRACT

Botswana has in the recent past 10 years made tremendous progress in the control of malaria and this informed re-orientation from malaria control to malaria elimination by the year 2020. This progress is attributed to improved case management, and scale-up of key vector control interventions; indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). However, insecticide resistance, outdoor biting and resting, and predisposing human behaviour, such as staying outdoors or sleeping outdoors without the use of protective measures, pose a challenge to the realization of the full impact of LLINs and IRS. This, together with the paucity of entomological data, inadequate resources and weak community participation for vector control programme implementation delayed attainment of Botswana's goal of malaria elimination. Also, the Botswana National Malaria Programme (NMP) experiences the lack of intersectoral collaborations and operational research for evidence-based decision making. This case study focuses on the vector control aspect of malaria elimination by identifying challenges and explores opportunities that could be taken advantage of to benefit the NMP to optimize and augment the current vector control interventions to achieve malaria elimination by the year 2030 as per the Global Technical Strategy for Malaria 2016-2030 targets. The authors emphasize the need for timely and quality entomological surveillance, operational research and integrated vector management.


Subject(s)
Communicable Disease Control/statistics & numerical data , Malaria/prevention & control , Mosquito Control/statistics & numerical data , Mosquito Vectors , Botswana
14.
Sci Total Environ ; 742: 140598, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32629272

ABSTRACT

Pesticide lifecycle management encompasses a range of elements from legislation, regulation, manufacturing, application, risk reduction, monitoring, and enforcement to disposal of pesticide waste. A survey was conducted in 2017-2018 to describe the contemporary global status of pesticide lifecycle management, to identify where the gaps are found. A three-tiered questionnaire was distributed to government entities in 194 countries. The response rate was 29%, 27% and 48% to the first, second and third part of the questionnaire, respectively. The results showed gaps for most of the selected indicators of pesticide management, suggesting that pesticide efficacy and safety to human health and the environment are likely being compromised at various stages of the pesticide lifecycle, and at varying degrees across the globe. Low-income countries generally had the highest incidence of gaps. Particular shortcomings were deficiencies in pesticide legislation, inadequate capacity for pesticide registration, protection against occupational exposure to pesticides, consumer protection against residues in food, and environmental protection against pesticide contamination. Policy support for, and implementation of, pesticide use-reduction strategies such as integrated pest management and integrated vector management has been inadequate across regions. Priority actions for structural improvement in pesticide lifecycle management are proposed, including pesticide use-reduction strategies, targeted interventions, and resource mobilization.

16.
Trans R Soc Trop Med Hyg ; 112(12): 546-554, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30252108

ABSTRACT

Background: Namibia is one of the countries among the eight that are targeting malaria elimination in southern Africa. However, the country has encountered malaria epidemics in recent years. The objective of this study was to investigate malaria epidemics and to contribute to strengthening malaria surveillance and control in an effort to move Namibia toward eliminating malaria. Method: Malaria epidemiology data for 2014-2015 were collected from the weekly surveillance system. All consenting household members within a 100-m radius of index households were screened in 2016 using a Carestart malaria HRP2/pLDH combined rapid diagnostic test after epidemics. All houses within this radius were sprayed in 2016 with the pyrethroid deltamethrin and K-Othrine WG 250. Anopheles mosquito-positive breeding sites were identified and treated with the organophosphate larvicide temephos. Insecticide susceptibility and bioassay tests were conducted. Results: During the epidemic response period in 2016, 56 parasitologically confirmed Plasmodium falciparum malaria cases in the Zambezi region were detected from active screening. The majority of those cases (83%) were asymptomatic infections. In the Kavango region, the malaria epidemic persisted, with 228 P. falciparum malaria cases recorded, but only 97 were investigated. In Namibia, malaria vector susceptibility was detected to 4% dichlorodiphenyltrichloroethane. Indoor residual spraying was conducted in 377 (90%) of the targeted households along with community awareness through health education of 1499 people and distribution of more than 2000 information, education and communication materials. The P. falciparum malaria cases in the Zambezi decreased from 122 in week 9 to 97 after week 15. Conclusions: Malaria epidemics along with the persistence of asymptomatic reservoir infections pose a serious challenge in Namibia's elimination effort. The country needs to ensure sustainable interventions to target asymptomatic reservoir infections and prevent epidemics in order to successfully achieve its goal of eliminating malaria.


Subject(s)
Disease Eradication/methods , Insecticides/administration & dosage , Malaria, Falciparum/epidemiology , Mosquito Control/methods , Mosquito Vectors/drug effects , Animals , Anopheles , Humans , Malaria, Falciparum/prevention & control , Namibia/epidemiology , Population Surveillance
17.
Malar J ; 17(1): 173, 2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29690873

ABSTRACT

BACKGROUND: Zambia was an early adopter of insecticide-treated nets strategy in 2001, and policy for mass distribution with long-lasting insecticidal nets (LLINs) in 2005. Since then, the country has implemented mass distribution supplemented with routine delivery through antenatal care and under five clinics in health facilities. The national targets of universal (100%) coverage and 80% utilization of LLINs have not been attained. Free mass LLIN distribution campaign in Zambia offers important lessons to inform future campaigns in the African region. METHODS: This study reviewed LLIN free mass distribution campaign information derived from Zambia's national and World Health Organization Global Malaria Programme annual reports and strategic plans published between 2001 and 2016. RESULTS: In 2014, a nationwide mass distribution campaign in Zambia delivered all the 6.0 million LLINs in 6 out of 10 provinces in 4 months between June and September before the onset of the rainy season. Compared with 235,800 LLINs and 2.9 million LLINs distributed on a rolling basis in 2008 and 2013, respectively, the 2014 mass campaign, which distributed 6 million LLINs represented the largest one-time-nationwide LLIN distribution in Zambia. The province (Luapula) with highest malaria transmission, mostly with rural settings recorded 98-100% sleeping spaces in homes covered with LLINs. The percentage of households owning at least 1 LLIN increased from 50.9% in 2006 to 77.7% in 2015. The 2014 mass campaign involved a coordinated response with substantial investments into macro (central) and micro (district) level planning, capacity building, tracking and logistics management supported by a new non-health sector partnership landscape. Coordination of LLIN distribution and logistics benefited from the mobile phone technology to transmit "real time" data on commodity tracking that facilitated timely delivery to districts. CONCLUSION: Free mass distribution of LLINs policy was adopted in 2005 in Zambia. Consistently implemented, has not only contributed to increased coverage of LLINs, but has also produced the added value and lessons of strengthening joint planning, strategic coordination, partnerships with non-health sector institutions and community engagement with traditional leaders at community. Furthermore, the mass distribution, through improving coverage has indirect added (spin-off) value or impact on other arthropod-borne diseases, in addition to malaria.


Subject(s)
Insecticide-Treated Bednets/statistics & numerical data , Mosquito Control/organization & administration , Family Characteristics , Humans , Insecticide-Treated Bednets/supply & distribution , Ownership , Zambia
19.
Trends Parasitol ; 33(1): 30-41, 2017 01.
Article in English | MEDLINE | ID: mdl-27720141

ABSTRACT

The increasing global threat of emerging and re-emerging vector-borne diseases (VBDs) poses a serious health problem. The World Health Organization (WHO) recommends integrated vector management (IVM) strategy for combating VBD transmission. An IVM approach requires entomological knowledge, technical and infrastructure capacity, and systems facilitating stakeholder collaboration. In sub-Saharan Africa, successful operational IVM experience comes from relatively few countries. This article provides an update on the extent to which IVM is official national policy, the degree of IVM implementation, the level of compliance with WHO guidelines, and concordance in the understanding of IVM, and it assesses the operational impact of IVM. The future outlook encompasses rational and sustainable use of effective vector control tools and inherent improved return for investment for disease vector control.


Subject(s)
Arthropod Vectors/physiology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/transmission , Parasitic Diseases/prevention & control , Parasitic Diseases/transmission , Africa South of the Sahara , Animals , Entomology , Health Policy/trends , Humans , Insect Control/legislation & jurisprudence , Insect Control/trends , World Health Organization
20.
Bull World Health Organ ; 94(6): 475-80, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27274600

ABSTRACT

PROBLEM: Indoor residual spraying and long-lasting insecticidal nets (LLINs) are key tools for malaria vector control. Malawi has struggled to scale up indoor residual spraying and to improve LLIN coverage and usage. APPROACH: In 2002, the Malawian National Malaria Control Programme developed guidelines for insecticide treated net distribution to reach the strategic target of at least 60% coverage of households with an LLIN. By 2005, the target coverage was 80% of households and the Global Fund financed the scale-up. The US President's Malaria Initiative funded the indoor residual spraying intervention. LOCAL SETTING: Malawi's entire population is considered to be at risk of malaria. Poor vector control, insecticide resistance in malaria vectors and insufficient technical and financial support have exacerbated the malaria burden. RELEVANT CHANGES: Between 2002 and 2012, 18 248 206 LLINs had been distributed. The coverage of at least one LLIN per household increased from 27% (3689/13 664) to 58% (1974/3404). Indoor residual spraying coverage increased from 28 227 to 653 592 structures between 2007 and 2011. However, vector resistance prompted a switch from pyrethroids to organophosphates for indoor residual spraying, which increased the cost and operations needed to be cut back from seven to one district. Malaria cases increased from 2 853 315 in 2002 to 6 748 535 in 2010, and thereafter dropped to 4 922 596 in 2012. LESSONS LEARNT: A single intervention-based approach for vector control may have suboptimal impact. Well-coordinated integrated vector management may offer greater benefits. A resistance management plan is essential for effective and sustainable vector control.


Subject(s)
Malaria/prevention & control , Mosquito Control/methods , Mosquito Control/organization & administration , Animals , Humans , Insect Vectors/growth & development , Insecticide-Treated Bednets , Malawi , Public Policy
SELECTION OF CITATIONS
SEARCH DETAIL
...