Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 3(5): 5202-5211, 2018 May 31.
Article in English | MEDLINE | ID: mdl-31458734

ABSTRACT

The reaction of 2-methoxy-6-[{2-(2-hydroxyethylamino)ethylimino}methyl] phenol (LH3) with lanthanide metal salts followed by the addition of nickel acetate allowed isolation of a family of octanuclear complexes, [Ni4Ln4(µ2-OH)2(µ3-OH)4(µ-OOCCH3)8(LH2)4]·(OH)2·xH2O. Single crystal X-ray diffraction studies of these complexes reveal that their central metallic core consists of two tetranuclear [Ni2Ln2O4] cubane subunits fused together by acetate and hydroxide bridges. The magnetic study of these complexes reveals a ferromagnetic interaction between the LnIII and the NiII center. The magnitude of exchange coupling between the NiII and LnIII center, parametrized from the magnetic data of the Gd analogue, gives J = +0.86 cm-1. The magneto caloric effect, studied for the NiII 4GdIII 4 complex, shows a maximum of magnetic entropy change, -ΔS m = 22.58 J kg-1 K-1 at 3 K for an applied external field of 5 T.

2.
Inorg Chem ; 53(7): 3417-26, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24673300

ABSTRACT

The reaction of the lanthanide(III) chloride salts [Gd(III), Tb(III), and Dy(III)] with a new chelating, flexible, and sterically unencumbered multisite coordinating compartmental Schiff-base ligand (E)-2-((6-(hydroxymethyl)pyridin-2-yl)methyleneamino)phenol (LH2) and pivalic acid (PivH) in the presence of triethylamine (Et3N) affords a series of tetranuclear Ln(III) coordination compounds, [Ln4(L)4(µ2-η(1)η(1)Piv)4]·xH2O·yCH3OH (1, Ln = Gd(III), x = 3, y = 6; 2, Ln = Tb(III), x = 6, y = 2; 3, Ln = Dy(III), x = 4, y = 6). X-ray diffraction studies reveal that the molecular structure contains a distorted cubane-like [Ln4(µ3-OR)4](+8) core, which is formed by the concerted coordination action of four dianionic L(2-) Schiff-base ligands. Each lanthanide ion is eight-coordinated (2N, 6O) to form a distorted-triangular dodecahedral geometry. Alternating current susceptibility measurements of complex 3 reveal frequency- and temperature-dependent two-step out-of-phase signals under zero direct current (dc) field, which is characteristic of single-molecule magnet behavior. Analysis of the dynamic magnetic data under an applied dc field of 1000 Oe to fully or partly suppress the quantum tunneling of magnetization relaxation process affords the anisotropic barriers and pre-exponential factors: Δ/kB = 73(2) K, τ0 = 4.4 × 10(-8) s; Δ/kB = 47.2(9) K, τ0 = 5.0 × 10(-7) s for the slow and fast relaxations, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL