Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Clin Nucl Med ; 48(7): e321-e331, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37145456

ABSTRACT

PURPOSE: Multiparametric MRI (mpMRI) has been promoted as an auxiliary diagnostic tool for prostate biopsy. However, prostate-specific membrane antigen (PSMA) including 68 Ga-PSMA-11, 18 F-DCFPyL, and 18 F-PSMA-1007 applied PET/CT imaging was an emerging diagnostic tool in prostate cancer patients for staging or posttreatment follow-up, even early detecting. Many studies have used PSMA PET for comparison with mpMRI to test the diagnostic ability for early prostate cancer. Unfortunately, these studies have shown conflicting results. This meta-analysis aimed to compare the differences in diagnostic performance between PSMA PET and mpMRI for detecting and T staging localized prostatic tumors. METHODS: This meta-analysis involved a systematic literature search of PubMed/MEDLINE and Cochrane Library databases. The pooling sensitivity and specificity of PSMA and mpMRI verified by pathological analysis were calculated and used to compare the differences between the 2 imaging tools. RESULTS: Overall, 39 studies were included (3630 patients in total) from 2016 to 2022 in the current meta-analysis and found that the pooling sensitivity values for localized prostatic tumors and T staging T3a and T3b of PSMA PET were 0.84 (95% confidence interval [CI], 0.83-0.86), 0.61 (95% CI, 0.39-0.79), and 0.62 (95% CI, 0.46-0.76), respectively, whereas those of mpMRI were found to be 0.84 (95% 0.78-0.89), 0.67 (95% CI, 0.52-0.80), and 0.60 (95% CI, 0.45-0.73), respectively, without significant differences ( P > 0.05). However, in a subgroup analysis of radiotracer, the pooling sensitivity of 18 F-DCFPyL PET was higher than mpMRI (relative risk, 1.10; 95% CI, 1.03-1.17; P < 0.01). CONCLUSIONS: This meta-analysis found that whereas 18 F-DCFPyL PET was superior to mpMRI at detecting localized prostatic tumors, the detection performance of PSMA PET for localized prostatic tumors and T staging was comparable to that of mpMRI.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Male , Humans , Multiparametric Magnetic Resonance Imaging/methods , Prostate/pathology , Positron Emission Tomography Computed Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Gallium Radioisotopes , Sensitivity and Specificity , Magnetic Resonance Imaging
2.
Clin Nucl Med ; 48(2): 132-142, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36607362

ABSTRACT

PURPOSE: 18F-FDG is the dominant radiotracer in oncology; however, it has limitations. Novel labeled fibroblast activation protein (FAP) radiotracers have been developed and published in several studies. Thus, this meta-analysis aimed to compare the detection rates (DRs) of FDG and FAP, based on previous studies from a systematic review. METHODS: PubMed/MEDLINE and Cochrane library databases were used to perform a comprehensive and systematic search and are updated to April 30, 2022. The DR, relative risk, and the SUVmax were calculated between the FAP and FDG tracers. Finally, the sensitivity, specificity, diagnostic odds ratio, and summary receiver operating characteristic curve of FAP and FDG were analyzed using gold and reference standards. RESULTS: Thirty studies (1170 patients) were included in the meta-analysis. The relative risks of FAP DR for the primary tumor, recurrent tumor, lymph node metastasis, and distant metastasis were FDG 1.06- to 3.00-fold per patient and per lesion. For the primary tumor, FAP uptake was most intense in pancreatic cancer, followed by head and neck, cervical, colorectal, lung, gastric, and hepatocellular carcinoma, and was higher than FDG except for urological system cancer. The sensitivity (0.84-0.98), diagnostic odds ratio (19.36-358.47), and summary receiver operating characteristic curve (0.94-0.99) of FAP based on patient and lesion were better for primary tumors, LN metastasis, and distant metastasis than FDG. CONCLUSIONS: Fibroblast activation protein is an extremely potential radiotracer to replace most of the use of FDG in oncology. It is noteworthy that the FAP tracers for primary tumors had low specificity despite excellent sensitivity and had lower uptake than FDG in urological system cancer. In addition, the difference in detection between FAP and FDG for LN metastasis could not be certain in sarcoma.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Radiopharmaceuticals , Neoplasm Recurrence, Local , Positron-Emission Tomography , Sensitivity and Specificity
3.
Nucl Med Biol ; 116-117: 108313, 2023.
Article in English | MEDLINE | ID: mdl-36621257

ABSTRACT

PURPOSE: Boron neutron capture therapy (BNCT), an attractive strategy for cancer treatment, can kill tumor cells and avoid injury to surrounding healthy cells. 4-Borono-2-[18F]fluorophenylalanine ([18F]FBPA) positron emission tomography (PET) is a reliable tool for patient screening. Due to the relatively low radiochemical yield when employing the electrophilic route, this study was able to develop a new method to produce no-carrier-added (NCA) [18F]FBPA and compare the biological characteristics with carrier-added (CA) characteristics. PROCEDURES: By starting from 4-bromo-2-nitrobenzaldehyde, NCA [18F]FBPA was prepared using radiofluorination, alkylation, borylation, and hydrolysis. Cellular uptake analyses, microPET imaging, and biodistribution analyses were conducted to characterize the biological properties of NCA and CA [18F]FBPA. RESULTS: The radiochemical yield of NCA [18F]FBPA was 20 % ± 6 % (decay corrected) with a radiochemical purity of >98 % and molar activity of 56 ± 15 GBq/µmol in a 100-min synthesis. The in vitro accumulation was significantly higher for NCA [18F]FBPA than for CA [18F]FBPA in both SAS and CT-26 cells. However, no apparent differences in tumor uptake were observed between NCA and CA [18F]FBPA-injected tumor-bearing mice. CONCLUSIONS: We successfully prepared NCA [18F]FBPA through nucleophilic substitution and achieved improved radiochemical yield and purity. We also demonstrated the effects of the amount of nonradioactive FBPA on in vitro cellular uptake and in vivo imaging studies.


Subject(s)
Boron Neutron Capture Therapy , Positron-Emission Tomography , Mice , Animals , Tissue Distribution , Positron-Emission Tomography/methods , Radiopharmaceuticals , Cell Line, Tumor , Boron Neutron Capture Therapy/methods , Boron Compounds , Fluorine Radioisotopes
4.
Front Med (Lausanne) ; 9: 1008200, 2022.
Article in English | MEDLINE | ID: mdl-36237546

ABSTRACT

Background: De novo lipogenesis is upregulated in many cancers, and targeting it represents a metabolic approach to cancer treatment. However, the treatment response is unpredictable because lipogenic activity varies greatly among individual tumors, thereby necessitating the assessment of lipogenic activity before treatment. Here, we proposed an imaging probe, positron emission tomography/computed tomography (PET/CT) with dual tracers combining 11C-acetate and 18F-fluorodeoxyglucose (18F-FDG), to assess the lipogenic activity of hepatocellular carcinoma (HCC) and predict the response to lipogenesis-targeted therapy. Methods: We investigated the association between 11C-acetate/18F-FDG uptake and de novo lipogenesis in three HCC cell lines (from well-differentiated to poorly differentiated: HepG2, Hep3B, and SkHep1) by examining the expression of lipogenic enzymes: acetyl-CoA synthetase 2 (ACSS2), fatty acid synthase (FASN), and ATP citrate lyase (ACLY). The glycolysis level was determined through glycolytic enzymes: pyruvate dehydrogenase expression (PDH). On the basis of the findings of dual-tracer PET/CT, we evaluated the treatment response to a lipase inhibitor (orlistat) in cell culture experiments and xenograft mice. Results: Dual-tracer PET/CT revealed the lipogenic activity of various HCC cells, which was positively associated with 11C-acetate uptake and negatively associated with 18F-FDG uptake. This finding represents the negative association between 11C-acetate and 18F-FDG uptake. Because these two tracers revealed the lipogenic and glycolytic activity, respectively, which implies an antagonism between lipogenic metabolism and glucose metabolism in HCC. In addition, dual-tracer PET/CT not only revealed the lipogenic activity but also predicted the treatment response to lipogenesis-targeted therapy. For example, HepG2 xenografts with high 11C-acetate but low 18F-FDG uptake exhibited high lipogenic activity and responded well to orlistat treatment, whereas SkHep1 xenografts with low 11C-acetate but high 18F-FDG uptake exhibited lower lipogenic activity and poor response to orlistat. Conclusion: The proposed non-invasive dual-tracer PET/CT imaging can reveal the lipogenesis and glycolysis status of HCC, thus providing an ideal imaging probe for predicting the therapeutic response of HCC to lipogenesis-targeted therapy.

5.
Int J Nanomedicine ; 16: 7813-7830, 2021.
Article in English | MEDLINE | ID: mdl-34880610

ABSTRACT

INTRODUCTION: Osteoporosis is a result of an imbalance in bone remodeling. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been considered as a potentially promising treatment for osteoporosis. However, the therapeutic effect, genetic alterations, and in vivo behavior of exogenous EVs for osteoporosis in mice models remain poorly understood. METHODS: A multiplexed molecular imaging strategy was constructed by micro-positron emission tomography (µPET)/computed tomography (CT), µCT, and optical imaging modality which reflected the osteoblastic activity, microstructure, and in vivo behavior of EVs, respectively. RNA sequencing was used to analyze the cargo of EVs, and the bone tissues of ovariectomized (OVX) mice post EV treatment. RESULTS: The result of [18F]NaF µPET showed an increase in osteoblastic activity in the distal femur of EV-treated mice, and the bone structural parameters derived from µCT were also improved. In terms of in vivo behavior of exogenous EVs, fluorescent dye-labeled EVs could target the distal femur of mice, whereas the uptakes of bone tissues were not significantly different between OVX mice and healthy mice. RNA sequencing demonstrated upregulation of ECM-related genes, which might associate with the PI3K/AKT signaling pathway, in line with the results of microRNA analysis showing that mir-21, mir-29, mir-221, and let-7a were enriched in Wharton's jelly-MSC-EVs and correlated to the BMP and PI3K/AKT signaling pathways. CONCLUSION: The therapeutic effect of exogenous WJ-MSC-EVs in the treatment of osteoporosis was successfully assessed by a multiplexed molecular imaging strategy. The RNA sequencing demonstrated the possible molecular targets in the regulation of bone remodeling. The results highlight the novelty of diagnostic and therapeutic strategies of EV-based treatment for osteoporosis.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Osteoporosis , Wharton Jelly , Animals , Mice , Molecular Imaging , Osteoporosis/diagnostic imaging , Osteoporosis/therapy , Phosphatidylinositol 3-Kinases , Sequence Analysis, RNA
6.
Sci Rep ; 11(1): 17636, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34480038

ABSTRACT

The zero echo time (ZTE) technique has improved the detection of lung nodules in PET/MRI but respiratory motion remains a challenge in lung scan. We investigated the feasibility and performance of fractionated deep-inspiration breath-hold (FDIBH) three-dimensional (3D) ZTE FDG PET/MRI for assessing lung nodules in patients with proved malignancy. Sixty patients who had undergone ZTE FDG PET/MRI and chest CT within a three-day interval were retrospectively included. Lung nodules less than 2 mm were excluded for analysis. Two physicians checked the adequacy of FDIBH ZTE and compared the lung nodule detection rates of FDIBH 3D ZTE and free-breathing (FB) four-dimensional (4D) ZTE, with chest CT as the reference standard. FDIBH resolved the effect of respiratory motion in 49 patients. The mean number and size of the pulmonary nodules identified in CT were 15 ± 31.3 per patient and 5.9 ± 4.6 mm in diameter. The overall nodule detection rate was 71% for FDIBH 3D ZTE and 70% for FB 4D ZTE (p = 0.73). FDIBH 3D ZTE significantly outperformed FB 4DZTE in detecting lung base nodules (72% and 68%; p = 0.03), especially for detecting those less than 6 mm (61% and 55%; p = 0.03). High inter-rater reliability for FDIBH 3D ZTE and FB 4D ZTE (k = 0.9 and 0.92) was noted. In conclusion, the capability of FDIBH 3D ZTE in respiratory motion resolution was limited with a technical failure rate of 18%. However, it could provide full expansion of the lung in a shorter scan time which enabled better detection of nodules (< 6 mm) in basal lungs, compared to FB 4D ZTE.


Subject(s)
Breath Holding , Lung Neoplasms/diagnosis , Solitary Pulmonary Nodule/diagnosis , Adult , Aged , Female , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Positron-Emission Tomography , Respiration , Retrospective Studies , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/physiopathology , Young Adult
7.
Mol Imaging ; 2021: 9996125, 2021.
Article in English | MEDLINE | ID: mdl-34381316

ABSTRACT

Background: Inducible nitric oxide synthase (iNOS) plays a crucial role in neuroinflammation, especially microglial activity, and may potentially represent a useful biomarker of neuroinflammation. In this study, we carefully defined a strategic plan to develop iNOS-targeted molecular PET imaging using (4'-amino-5',8'-difluoro-1'H-spiro[piperidine-4,2'-quinazolin]-1-yl)(4-fluorophenyl)methanone ([18F]FBAT) as a tracer in a mouse model of lipopolysaccharide- (LPS-) induced brain inflammation. Methods: An in vitro model, murine microglial BV2 cell line, was used to assess the uptake of [18F]FBAT in response to iNOS induction at the cellular level. In vivo whole-body dynamic PET/MR imaging was acquired in LPS-treated (5 mg/kg) and control mice. Standard uptake value (SUV), total volume of distribution (V t), and area under the curve (AUC) based on the [18F]FBAT PET signals were determined. The expression of iNOS was confirmed by immunohistochemistry (IHC) of brain tissues. Results: At the end of synthesis, the yield of [18F]FBAT was 2.2-3.1% (EOS), radiochemical purity was >99%, and molar radioactivity was 125-137 GBq/µmol. In vitro, [18F]FBAT rapidly and progressively accumulated in murine microglial BV2 cells exposed to LPS; however, [18F]FBAT accumulation was inhibited by aminoguanidine, a selective iNOS inhibitor. In vivo biodistribution studies of [18F]FBAT showed a significant increase in the liver and kidney on LPS-treated mice. At 3 h postinjection of LPS, in vivo, the [18F]FBAT accumulation ratios at 30 min post intravenous (i.v.) radiotracer injection for the whole brain, cortex, cerebellum, and brainstem were 2.16 ± 0.18, 1.53 ± 0.25, 1.41 ± 0.21, and 1.90 ± 0.12, respectively, compared to those of mice not injected with LPS. The mean area under the curve (AUC0-30min), total volume of distribution (V t, mL/cm3), and K i (influx rate) of [18F]FBAT were 1.9 ± 0.21- and 1.4 ± 0.22-fold higher in the 3 h LPS group, respectively, than in the control group. In the pharmacokinetic two-compartment model, the whole brain K i of [18F]FBAT was significantly higher in mice injected with LPS compared to the control group. Aminoguanidine, selective iNOS inhibitor, pretreatment significantly reduced the AUC0-30min and V t values in LPS-induced mice. Quantitative analysis of immunohistochemically stained brain sections confirmed iNOS was preferentially upregulated in the cerebellum and cortex of mice injected with LPS. Conclusion: An automated robotic method was established for radiosynthesis of [18F]FBAT, and the preliminary in vitro and in vivo results demonstrated the feasibility of detecting iNOS activity/expression in LPS-treated neuroinflammation by noninvasive imaging with [18F]FBAT PET/MRI.


Subject(s)
Magnetic Resonance Imaging , Positron-Emission Tomography , Animals , Mice , Nitric Oxide , Nitric Oxide Synthase Type II/metabolism , Piperidines , Tissue Distribution
8.
Int J Mol Sci ; 22(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34445342

ABSTRACT

Epigenetic regulation by histone deacetylase (HDAC) is associated with synaptic plasticity and memory formation, and its aberrant expression has been linked to cognitive disorders, including Alzheimer's disease (AD). This study aimed to investigate the role of class IIa HDAC expression in AD and monitor it in vivo using a novel radiotracer, 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]TFAHA). A human neural cell culture model with familial AD (FAD) mutations was established and used for in vitro assays. Positron emission tomography (PET) imaging with [18F]TFAHA was performed in a 3xTg AD mouse model for in vivo evaluation. The results showed a significant increase in HDAC4 expression in response to amyloid-ß (Aß) deposition in the cell model. Moreover, treatment with an HDAC4 selective inhibitor significantly upregulated the expression of neuronal memory-/synaptic plasticity-related genes. In [18F]TFAHA-PET imaging, whole brain or regional uptake was significantly higher in 3xTg AD mice compared with WT mice at 8 and 11 months of age. Our study demonstrated a correlation between class IIa HDACs and Aßs, the therapeutic benefit of a selective inhibitor, and the potential of using [18F]TFAHA as an epigenetic radiotracer for AD, which might facilitate the development of AD-related neuroimaging approaches and therapies.


Subject(s)
Alzheimer Disease/diagnostic imaging , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylases/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Anilides/chemistry , Anilides/pharmacokinetics , Animals , Brain/diagnostic imaging , Brain/metabolism , Disease Models, Animal , Epigenesis, Genetic/drug effects , Epigenesis, Genetic/physiology , Fluorine Radioisotopes/chemistry , Fluorine Radioisotopes/pharmacokinetics , Fluoroacetates/chemistry , Fluoroacetates/pharmacokinetics , Gene Expression Regulation, Enzymologic/drug effects , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/classification , Histone Deacetylases/genetics , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Neuroimaging/methods , Positron-Emission Tomography/methods , Tumor Cells, Cultured
9.
Int J Mol Sci ; 22(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208566

ABSTRACT

Regarding the increased incidence and high mortality rate of malignant melanoma, practical early-detection methods are essential to improve patients' clinical outcomes. In this study, we successfully prepared novel picolinamide-benzamide (18F-FPABZA) and nicotinamide-benzamide (18F-FNABZA) conjugates and determined their biological characteristics. The radiochemical yields of 18F-FPABZA and 18F-FNABZA were 26 ± 5% and 1 ± 0.5%, respectively. 18F-FPABZA was more lipophilic (log P = 1.48) than 18F-FNABZA (log P = 0.68). The cellular uptake of 18F-FPABZA in melanotic B16F10 cells was relatively higher than that of 18F-FNABZA at 15 min post-incubation. However, both radiotracers did not retain in amelanotic A375 cells. The tumor-to-muscle ratios of 18F-FPABZA-injected B16F10 tumor-bearing mice increased from 7.6 ± 0.4 at 15 min post-injection (p.i.) to 27.5 ± 16.6 at 3 h p.i., while those administered with 18F-FNABZA did not show a similarly dramatic increase throughout the experimental period. The results obtained from biodistribution studies were consistent with those derived from microPET imaging. This study demonstrated that 18F-FPABZA is a promising melanin-targeting positron emission tomography (PET) probe for melanotic melanoma.


Subject(s)
Fluorine Radioisotopes , Melanoma, Experimental/diagnostic imaging , Niacinamide , Picolinic Acids , Radiopharmaceuticals , Animals , Cell Line, Tumor , Fluorine Radioisotopes/chemistry , Melanins/metabolism , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Niacinamide/chemistry , Picolinic Acids/chemistry , Positron-Emission Tomography , Protein Binding , Radiopharmaceuticals/chemistry , Tissue Distribution
10.
Int J Mol Sci ; 22(9)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066508

ABSTRACT

Ovarian cancer (OC) metastases frequently occur through peritoneal dissemination, and they contribute to difficulties in treatment. While photodynamic therapy (PDT) has the potential to treat OC, its use is often limited by tissue penetration depth and tumor selectivity. Herein, we combined Cerenkov radiation (CR) emitted by 18F-FDG accumulated in tumors as an internal light source and several photosensitizer (PS) candidates with matched absorption bands, including Verteporfin (VP), Chlorin e6 (Ce6) and 5'-Aminolevulinic acid (5'-ALA), to evaluate the anti-tumor efficacy. The in vitro effect of CR-induced PDT (CR-PDT) was evaluated using a cell viability assay, and the efficiency of PS was assessed by measuring the singlet oxygen production. An intraperitoneal ES2 OC mouse model was used for in vivo evaluation of CR-PDT. Positron emission tomography (PET) imaging and bioluminescence-based imaging were performed to monitor the biologic uptake of 18F-FDG and the therapeutic effect. The in vitro studies demonstrated Ce6 and VP to be more effective PSs for CR-PDT. Moreover, VP was more efficient in the generation of singlet oxygen and continued for a long time when exposed to fluoro-18 (18F). Combining CR emitted by 18F-FDG and VP treatment not only significantly suppressed tumor growth, but also prolonged median survival times compared to either monotherapy.


Subject(s)
Fluorodeoxyglucose F18/therapeutic use , Ovarian Neoplasms/therapy , Photochemotherapy , Radiation , Xenograft Model Antitumor Assays , Animals , Cell Line, Tumor , Female , Injections, Intraperitoneal , Mice, Inbred BALB C
11.
Biomedicines ; 9(6)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073900

ABSTRACT

The accumulation of extracellular ß-amyloid (Aß) plaques within the brain is unique to Alzheimer's disease (AD) and thought to induce synaptic deficits and neuronal loss. Optimal therapies should tackle the core AD pathophysiology and prevent the decline in memory and cognitive functions. This study aimed to evaluate the therapeutic performance of mesenchymal stem cell-derived exosomes (MSC-exosomes), which are secreted membranous elements encapsulating a variety of MSC factors, on AD. A human neural cell culture model with familial AD (FAD) mutations was established and co-cultured with purified MSC-exosomes. 2-[18F]Fluoro-2-deoxy-d-glucose ([18F]FDG) and novel object recognition (NOR) testing were performed before/after treatment to evaluate the therapeutic effect in vivo. The AD-related pathology and the expression of neuronal memory/synaptic plasticity-related genes were also evaluated. The results showed that MSC-exosomes reduced Aß expression and restored the expression of neuronal memory/synaptic plasticity-related genes in the cell model. [18F]FDG-PET imaging and cognitive assessment revealed a significant improvement in brain glucose metabolism and cognitive function in AD transgenic mice. The phase of neurons and astrocytes in the brain of AD mice were also found to be regulated after treatment with MSC-exosomes. Our study demonstrates the therapeutic mechanism of MSC-exosomes and provides an alternative therapeutic strategy based on cell-free MSC-exosomes for the treatment of AD.

12.
iScience ; 24(5): 102399, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33997684

ABSTRACT

Blink reflex has long been considered closely related to physiological states, from which abundant information on ocular health and activities can be revealed. In this study, a smart glasses wearable has been developed, incorporating a flexible and sensitive pressure sensor, to monitor blink patterns by continuously detecting ocular muscular movements, referred to as blink-sensing glasses. By applying the emerging flexible iontronic sensing (FITS) sensor with the sensitivity of 340 pF/mmHg, the skin pressure variations induced by movements of the orbicularis oculi muscles can be monitored in real time. The blink-sensing glasses can successfully capture blink patterns with a high accuracy of 96.3% and have been used to differentiate the blink features from both dry-eye subjects and healthy controls. This device can be potentially used as a new clinical and research monitoring tool for continuous eye blink analysis, while providing patients with high comfortableness in long-term ambulatory and home settings.

13.
EJNMMI Res ; 11(1): 26, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33725191

ABSTRACT

BACKGROUND: Expression of translocator protein (TSPO) on the outer mitochondrial membrane of activated microglia is strongly associated with neuroinflammation. The second-generation PET ligand [18F]FEPPA specifically binds TSPO to enable in vivo visualization and quantification of neuroinflammation. We optimized a fully automated radiosynthesis method and evaluated the utility of [18F]FEPPA, the second-generation PET ligand specifically binds TSPO, in a mouse model of systemic LPS challenge to detect TSPO-associated signals of central and peripheral inflammation. In vivo dynamic PET/MR imaging was performed in LPS-induced and control mice after [18F]FEPPA administration. The relationship between the [18F]FEPPA signal and the dose of LPS was assessed. The cytokine levels (i.e., TNF-α, Il-1ß, Il-6) in LPS-induced mice were measured by RT-PCR. Standard uptake value (SUV), total volume of distribution (VT) and area under the curve (AUC) were determined based on the metabolite-uncorrected plasma input function. Western blotting and immunostaining were used to measure TSPO expression in the brain. RESULTS: The fully automated [18F]FEPPA radiosynthesis produced an uncorrected radiochemical yield of 30 ± 2% within 80 min, with a radiochemical purity greater than 99% and specific activity of 148.9‒216.8 GBq/µmol. Significant differences were observed in the brain after [18F]FEPPA administration: SUV, VT and AUC were 1.61 ± 0.1, 1.25 ± 0.12 and 1.58 ± 0.09-fold higher in LPS-injected mice than controls. TNF-α, Il-1ß and Il-6 mRNA levels were also elevated in the brains of LPS-injected mice. Western blotting revealed TSPO (p < 0.05) and Iba-1 (p < 0.01) were upregulated in the brain after LPS administration. In LPS-injected mice, TSPO immunoactivity colocalized with Iba-1 in the cerebrum and TSPO was significantly overexpressed in the hippocampus and cerebellum. The peripheral organs (heart, lung) of LPS-injected mice had higher [18F]FEPPA signal-to-noise ratios than control mice. CONCLUSIONS: Based on the current data on ligand specificity and selectivity in central tissues using 7 T PET/MR imaging, we demonstrate that [18F]FEPPA accumulations significant increased in the specific brain regions of systemic LPS-induced neuroinflammation (5 mg/kg). Future investigations are needed to determine the sensitivity of [18F]FEPPA as a biomarker of neuroinflammation as well as the correlation between the PET signal intensity and the expression levels of TSPO.

14.
IEEE Trans Biomed Eng ; 68(9): 2776-2786, 2021 09.
Article in English | MEDLINE | ID: mdl-33493109

ABSTRACT

OBJECTIVE: Venous Thromboembolism (VTE) is a commonly underdiagnosed disease with severe consequences and an exceedingly high mortality rate. Conventional compression wraps are devised for therapeutic purpose but lack diagnostic capacity. Recent advances in flexible electronics and wearable technologies offer many possibilities for chronic disease management. In particular, vital signs have been studied to show a strong correlation with the risk of VTE patients. In this study, we aim to develop an intelligent theranostic compression device, referred to as iWRAP, with the built-in capacity of real-time vital sign monitoring together with auto-adjustable compression level. METHODS: An instantaneous pneumatic feedback control with a high-resolution pressure sensor is integrated to provide a highly stabilized compression level at the prescribed interface pressure for an improved therapeutic outcome. Meanwhile, arterial pulse waveforms extracted from the pressure readings from the smart compression device can be utilized to derive the body vital signs, including heart rate (HR), respiratory rate (RR) and blood pressure (BP). RESULTS: A reliable delivery of the targeted compression level within ±5% accuracy in the range of 20-60 mmHg has been achieved through the feedback of the interface pressure. Both HR and RR have been measured within clinical-grade accuracies. Moreover, BP estimated using an ALA model has been achieved at low compression levels, which is also within a clinical-acceptable accuracy. The acquired vital information has been instantaneously fit into the clinically acceptable criteria for life-threatening PE risk with timely assessments. CONCLUSION: The iWRAP has shown the potential to become the first theranostic wearable device with both continuous delivery of accurate and effective compression therapy and real-time monitoring of life-threatening conditions for VTE patients.


Subject(s)
Venous Thromboembolism , Wearable Electronic Devices , Humans , Precision Medicine , Pressure , Venous Thromboembolism/diagnosis , Vital Signs
15.
Appl Radiat Isot ; 161: 109143, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32250842

ABSTRACT

The whole picture of the BNCT facility at Tsing Hua Open-pool Reactor will be presented which consists of the following aspects: the construction project, the beam quality, routine operations including the QA program for the beam delivery, determination of boron-10 concentration in blood, T/N ratio, and the clinical affairs including the patient recruit procedure and the patient irradiation procedure. The facility is positioned to serve for conducting clinical trials, emergent (compassionate) treatments, and R&D works.


Subject(s)
Boron Neutron Capture Therapy , Neoplasms/radiotherapy , Nuclear Reactors , China , Facility Design and Construction , Humans , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Remission Induction , Survival Rate
16.
J Nucl Cardiol ; 27(3): 819-828, 2020 06.
Article in English | MEDLINE | ID: mdl-30324328

ABSTRACT

BACKGROUND: Short imaging protocol to quantify myocardial blood flow (MBF) and myocardial flow reserve (MFR) may enhance the clinical application of 13N-ammonia cardiac PET. We assessed the flow quantitation of 13N-ammonia PET implementing simple retention model and two-compartment model. METHODS: Fourteen healthy volunteers (HVT) and twenty-three clinical patients received 13N-ammonia PET/CT. The simple retention model used the first 7-minute image to quantify MBF. Global and regional MBF and MFR of the two models were compared. RESULTS: Global and regional MBF and MFR of these two models were highly correlated with mildly inferior correlation in RCA territory (global R2: rest MBF = 0.79, stress MBF = 0.65, MFR = 0.77; regional R2: rest MBF ≥ 0.72, stress MBF ≥ 0.52, MFR ≥ 0.68). There were significant differences for MFR (4.04 ± 0.72, 3.66 ± 0.48, p = .02) and rest MBF (0.69 ± 0.12, 0.78 ± 0.12, p = .02) between the two models in the HVT group. CONCLUSIONS: 13N-ammonia global and regional MBF and MFR from the simple retention model demonstrate strong correlations with that from the two-compartment model. Significant differences of MFR and rest MBF are noted in the HVT group, with a proposed normal reference value for the 13N-ammonia short simple retention protocol.


Subject(s)
Coronary Artery Disease/diagnostic imaging , Coronary Circulation , Heart/diagnostic imaging , Heart/physiopathology , Nitrogen Radioisotopes , Positron Emission Tomography Computed Tomography/methods , Adult , Aged , Aged, 80 and over , Ammonia , Arteries/diagnostic imaging , Female , Fractional Flow Reserve, Myocardial , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Myocardial Perfusion Imaging/methods , Myocardium , Radiopharmaceuticals
18.
Ann Nucl Med ; 34(1): 58-64, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31650410

ABSTRACT

OBJECTIVE: The tumor-to-normal tissue (T/N) boron ratio is determined in a patient prior to boron neutron capture therapy (BNCT) using 4-borono-2-18F-fluoro-L-phenylalanine (18F-FBPA) positron emission tomography (PET). The T/N ratio is used as a reference parameter to calculate BNCT dose and to evaluate treatment effects. The boronophenylalanine (BPA) dosage for BNCT treatment is higher than the 18F-FBPA dosage for PET diagnosis. Therefore, we aimed to determine whether the T/N ratios between diagnosis and treatment were correlated. METHODS: In this study, SAS tongue cancer cells were used to develop an orthotopic nude mouse model. Micro-PET was performed after the mice were injected a dose of 3.7 ± 0.74 MBq of 18F-FBPA via the tail vein. The 18F radioactivity in the tumor, muscle, and heart blood pool was calculated using AMIND software. Organs and blood were collected for boron concentration analysis using inductively coupled plasma-atomic emission spectroscopy after the mice were injected with 400 mg/kg BPA at 15, 30, 45, and 60 min. RESULTS: Pharmacokinetics of the tumor and muscle from 45 to 60 min after 18F-FBPA and BPA injections were slightly increased, whereas that of blood was slightly decreased. Median T/N ratios at 60 min after 18F-FBPA and BPA injections were 3.5 and 3.43, respectively. Median value of the T/N ratio between them was 3.49 at 60 min. The T/N ratio at 60 min after 18F-FBPA injection was similar to that after BPA injection. However, median tumor-to-blood (T/B) boron ratios of 18F-FBPA and BPA at 60 min were 1.63 and 3.35, respectively. Median value between them was 1.83 at 60 min. CONCLUSIONS: In this study, the T/B ratios demonstrate the spread of a distribution between 18F-FBPA and BPA injections. At 60 min, the T/N ratio of the 18F-FBPA injection was similar to that of the BPA injection. Boron concentration in normal tissue was almost equal to that in blood. Therefore, the representative T/N ratio could be obtained at 60 min after 18F-FBPA injection, and it was used as a reference parameter for calculating accurate radiation dose.


Subject(s)
Boron Compounds/therapeutic use , Boron Neutron Capture Therapy , Phenylalanine/analogs & derivatives , Positron-Emission Tomography , Radiation Dosage , Tongue Neoplasms/diagnostic imaging , Tongue Neoplasms/radiotherapy , Animals , Boron Compounds/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic , Humans , Male , Mice , Mice, Inbred BALB C , Phenylalanine/metabolism , Phenylalanine/therapeutic use , Radiotherapy Dosage , Tissue Distribution , Tongue Neoplasms/metabolism
19.
Physiol Rep ; 7(19): e14252, 2019 10.
Article in English | MEDLINE | ID: mdl-31591828

ABSTRACT

This investigation explored the hypothesis that whether the coefficient of variation of the fourth harmonic amplitude of the radial pulse wave (C4CV) predicts the risk of macrovascular and microvascular events in patients with type 2 diabetes mellitus (T2DM). Radial pulse wave and brachial blood pressure were measured at baseline in 2324 patients with T2DM and C4CV was calculated using the Fourier series method. Macrovascular and microvascular events during follow-up were determined by medical records. We plotted the Kaplan-Meier curve and performed a Cox proportional hazard model and a log-rank test to estimate the effectiveness of C4CV as a risk predictor. We divided patients into quartile groups based on C4CV (<4.3%, 4.3% to 6.8%, 6.8% to 11.4%, and >11.4%). Compared with patients with C4CV < 4.3%, patients with C4CV> 11.4% had a double incidence of macrovascular events (hazard ratio, 2.13; 95% CI, 1.70-2.67) and microvascular events (hazard ratio, 2.08; 95% CI, 1.67-2.58), and the incidence of cardiovascular death was three times (hazard ratio, 3.03; 95% CI, 1.10-8.83). The Cox regression analysis demonstrated that the risk of both macrovascular and microvascular outcomes increases with the increase in quartile level of C4CV value (P < 0.0001). These associations remained after adjustment for age, gender, smoking, systolic blood pressure, diastolic blood pressure, dyslipidemia, diabetes duration, Hba1c, and cardiovascular disease (P < 0.0001). C4CV is a novel independent predictor of cardiovascular mortality, macrovascular events, and microvascular events in patients with T2DM.


Subject(s)
Blood Pressure/physiology , Diabetes Mellitus, Type 2/complications , Diabetic Angiopathies/diagnosis , Aged , Female , Humans , Male , Middle Aged , Risk Assessment/methods
20.
J Diabetes Complications ; 33(11): 107420, 2019 11.
Article in English | MEDLINE | ID: mdl-31488349

ABSTRACT

This brief report take a further look on the first harmonic of radial pulse wave (C1) after the 1.8 ±â€¯0.5 years follow-up and demonstrated that the quartile level of C1 independently predicts the risk of cardiovascular death, major adverse cardiovascular events, and microvascular outcomes in 2324 patients with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetic Angiopathies/diagnosis , Pulse Wave Analysis , Radial Artery/physiology , Aged , Cohort Studies , Diabetes Mellitus, Type 2/physiopathology , Diabetic Angiopathies/etiology , Diabetic Angiopathies/physiopathology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Prospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...