Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Epilepsia ; 65(5): 1360-1373, 2024 May.
Article En | MEDLINE | ID: mdl-38517356

OBJECTIVES: Responsive neurostimulation (RNS) is an established therapy for drug-resistant epilepsy that delivers direct electrical brain stimulation in response to detected epileptiform activity. However, despite an overall reduction in seizure frequency, clinical outcomes are variable, and few patients become seizure-free. The aim of this retrospective study was to evaluate aperiodic electrophysiological activity, associated with excitation/inhibition balance, as a novel electrographic biomarker of seizure reduction to aid early prognostication of the clinical response to RNS. METHODS: We identified patients with intractable mesial temporal lobe epilepsy who were implanted with the RNS System between 2015 and 2021 at the University of Utah. We parameterized the neural power spectra from intracranial RNS System recordings during the first 3 months following implantation into aperiodic and periodic components. We then correlated circadian changes in aperiodic and periodic parameters of baseline neural recordings with seizure reduction at the most recent follow-up. RESULTS: Seizure reduction was correlated significantly with a patient's average change in the day/night aperiodic exponent (r = .50, p = .016, n = 23 patients) and oscillatory alpha power (r = .45, p = .042, n = 23 patients) across patients for baseline neural recordings. The aperiodic exponent reached its maximum during nighttime hours (12 a.m. to 6 a.m.) for most responders (i.e., patients with at least a 50% reduction in seizures). SIGNIFICANCE: These findings suggest that circadian modulation of baseline broadband activity is a biomarker of response to RNS early during therapy. This marker has the potential to identify patients who are likely to respond to mesial temporal RNS. Furthermore, we propose that less day/night modulation of the aperiodic exponent may be related to dysfunction in excitation/inhibition balance and its interconnected role in epilepsy, sleep, and memory.


Circadian Rhythm , Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/therapy , Epilepsy, Temporal Lobe/physiopathology , Male , Female , Adult , Circadian Rhythm/physiology , Retrospective Studies , Middle Aged , Drug Resistant Epilepsy/therapy , Drug Resistant Epilepsy/physiopathology , Seizures/physiopathology , Seizures/therapy , Deep Brain Stimulation/methods , Treatment Outcome , Young Adult , Electroencephalography/methods
2.
Brain ; 147(2): 521-531, 2024 02 01.
Article En | MEDLINE | ID: mdl-37796038

In patients with drug-resistant epilepsy, electrical stimulation of the brain in response to epileptiform activity can make seizures less frequent and debilitating. This therapy, known as closed-loop responsive neurostimulation (RNS), aims to directly halt seizure activity via targeted stimulation of a burgeoning seizure. Rather than immediately stopping seizures as they start, many RNS implants produce slower, long-lasting changes in brain dynamics that better predict clinical outcomes. Here we hypothesize that stimulation during brain states with less epileptiform activity drives long-term changes that restore healthy brain networks. To test this, we quantified stimulation episodes during low- and high-risk brain states-that is, stimulation during periods with a lower or higher risk of generating epileptiform activity-in a cohort of 40 patients treated with RNS. More frequent stimulation in tonic low-risk states and out of rhythmic high-risk states predicted seizure reduction. Additionally, stimulation events were more likely to be phase-locked to prolonged episodes of abnormal activity for intermediate and poor responders when compared to super-responders, consistent with the hypothesis that improved outcomes are driven by stimulation during low-risk states. These results support the hypothesis that stimulation during low-risk periods might underlie the mechanisms of RNS, suggesting a relationship between temporal patterns of neuromodulation and plasticity that facilitates long-term seizure reduction.


Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsy , Humans , Deep Brain Stimulation/methods , Epilepsy/therapy , Seizures/therapy , Brain , Drug Resistant Epilepsy/therapy
3.
Epilepsia ; 64(7): e135-e142, 2023 07.
Article En | MEDLINE | ID: mdl-37163225

We describe an electrical "running down" phenomenon and also a consistent spectral change (in the aperiodic component of the power spectrum) derived from chronic interictal electrocorticography (ECoG) after surgery in a patient with drug-resistant epilepsy. These data were recorded using a closed-loop neurostimulation system that was implanted after resection. The patient has been seizure-free for 2.5 years since resection without requiring the neurostimulator to be turned on to stimulate. Concurrently, there was an exponential decrease in the number of epileptiform electrographic detections recorded by the device, particularly over the first 26 weeks, indicative of an electrical running down phenomenon as the brain adapted to an extended period of seizure freedom. We also find that the aperiodic exponent of the power spectrum gradually decreases over time. The aperiodic component of intracranial ECoG may represent a novel marker of epileptogenicity, independent of seizures.


Drug Resistant Epilepsy , Epilepsy , Humans , Epilepsy/surgery , Seizures , Electrocorticography , Brain/diagnostic imaging , Brain/surgery , Drug Resistant Epilepsy/surgery
4.
Ann Clin Transl Neurol ; 10(1): 136-143, 2023 01.
Article En | MEDLINE | ID: mdl-36480536

We report the case of a patient with unilateral diffuse frontotemporal epilepsy in whom we implanted a responsive neurostimulation system with leads spanning the anterior and centromedian nucleus of the thalamus. During chronic recording, ictal activity in the centromedian nucleus consistently preceded the anterior nucleus, implying a temporally organized seizure network involving the thalamus. With stimulation, the patient had resolution of focal impaired awareness seizures and secondarily generalized seizures. This report describes chronic recordings of seizure activity from multiple thalamic nuclei within a hemisphere and demonstrates the potential efficacy of closed-loop neurostimulation of multiple thalamic nuclei to control seizures.


Epilepsies, Partial , Epilepsy , Humans , Seizures/therapy , Thalamic Nuclei , Thalamus , Epilepsies, Partial/therapy
5.
Epilepsia ; 63(8): 2037-2055, 2022 08.
Article En | MEDLINE | ID: mdl-35560062

OBJECTIVE: Responsive neurostimulation is an effective therapy for patients with refractory mesial temporal lobe epilepsy. However, clinical outcomes are variable, few patients become seizure-free, and the optimal stimulation location is currently undefined. The aim of this study was to quantify responsive neurostimulation in the mesial temporal lobe, identify stimulation-dependent networks associated with seizure reduction, and determine if stimulation location or stimulation-dependent networks inform outcomes. METHODS: We modeled patient-specific volumes of tissue activated and created probabilistic stimulation maps of local regions of stimulation across a retrospective cohort of 22 patients with mesial temporal lobe epilepsy. We then mapped the network stimulation effects by seeding tractography from the volume of tissue activated with both patient-specific and normative diffusion-weighted imaging. We identified networks associated with seizure reduction across patients using the patient-specific tractography maps and then predicted seizure reduction across the cohort. RESULTS: Patient-specific stimulation-dependent connectivity was correlated with responsive neurostimulation effectiveness after cross-validation (p = .03); however, normative connectivity derived from healthy subjects was not (p = .44). Increased connectivity from the volume of tissue activated to the medial prefrontal cortex, cingulate cortex, and precuneus was associated with greater seizure reduction. SIGNIFICANCE: Overall, our results suggest that the therapeutic effect of responsive neurostimulation may be mediated by specific networks connected to the volume of tissue activated. In addition, patient-specific tractography was required to identify structural networks correlated with outcomes. It is therefore likely that altered connectivity in patients with epilepsy may be associated with the therapeutic effect and that utilizing patient-specific imaging could be important for future studies. The structural networks identified here may be utilized to target stimulation in the mesial temporal lobe and to improve seizure reduction for patients treated with responsive neurostimulation.


Epilepsy, Temporal Lobe , Epilepsy , Epilepsy/therapy , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/therapy , Gyrus Cinguli , Humans , Magnetic Resonance Imaging , Retrospective Studies , Temporal Lobe
7.
Sci Rep ; 11(1): 24155, 2021 12 17.
Article En | MEDLINE | ID: mdl-34921176

In this study, we quantified the coverage of gray and white matter during intracranial electroencephalography in a cohort of epilepsy patients with surface and depth electrodes. We included 65 patients with strip electrodes (n = 12), strip and grid electrodes (n = 24), strip, grid, and depth electrodes (n = 7), or depth electrodes only (n = 22). Patient-specific imaging was used to generate probabilistic gray and white matter maps and atlas segmentations. Gray and white matter coverage was quantified using spherical volumes centered on electrode centroids, with radii ranging from 1 to 15 mm, along with detailed finite element models of local electric fields. Gray matter coverage was highly dependent on the chosen radius of influence (RoI). Using a 2.5 mm RoI, depth electrodes covered more gray matter than surface electrodes; however, surface electrodes covered more gray matter at RoI larger than 4 mm. White matter coverage and amygdala and hippocampal coverage was greatest for depth electrodes at all RoIs. This study provides the first probabilistic analysis to quantify coverage for different intracranial recording configurations. Depth electrodes offer increased coverage of gray matter over other recording strategies if the desired signals are local, while subdural grids and strips sample more gray matter if the desired signals are diffuse.


Electrocorticography , Epilepsy , Gray Matter , Hippocampus , Magnetic Resonance Imaging , White Matter , Adult , Epilepsy/diagnostic imaging , Epilepsy/physiopathology , Female , Gray Matter/diagnostic imaging , Gray Matter/physiopathology , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Humans , Male , White Matter/diagnostic imaging , White Matter/physiopathology
8.
Front Neurosci ; 15: 769872, 2021.
Article En | MEDLINE | ID: mdl-34955721

Accurate anatomical localization of intracranial electrodes is important for identifying the seizure foci in patients with epilepsy and for interpreting effects from cognitive studies employing intracranial electroencephalography. Localization is typically performed by coregistering postimplant computed tomography (CT) with preoperative magnetic resonance imaging (MRI). Electrodes are then detected in the CT, and the corresponding brain region is identified using the MRI. Many existing software packages for electrode localization chain together separate preexisting programs or rely on command line instructions to perform the various localization steps, making them difficult to install and operate for a typical user. Further, many packages provide solutions for some, but not all, of the steps needed for confident localization. We have developed software, Locate electrodes Graphical User Interface (LeGUI), that consists of a single interface to perform all steps needed to localize both surface and depth/penetrating intracranial electrodes, including coregistration of the CT to MRI, normalization of the MRI to the Montreal Neurological Institute template, automated electrode detection for multiple types of electrodes, electrode spacing correction and projection to the brain surface, electrode labeling, and anatomical targeting. The software is written in MATLAB, core image processing is performed using the Statistical Parametric Mapping toolbox, and standalone executable binaries are available for Windows, Mac, and Linux platforms. LeGUI was tested and validated on 51 datasets from two universities. The total user and computational time required to process a single dataset was approximately 1 h. Automatic electrode detection correctly identified 4362 of 4695 surface and depth electrodes with only 71 false positives. Anatomical targeting was verified by comparing electrode locations from LeGUI to locations that were assigned by an experienced neuroanatomist. LeGUI showed a 94% match with the 482 neuroanatomist-assigned locations. LeGUI combines all the features needed for fast and accurate anatomical localization of intracranial electrodes into a single interface, making it a valuable tool for intracranial electrophysiology research.

9.
Front Neurosci ; 15: 691701, 2021.
Article En | MEDLINE | ID: mdl-34408621

Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against in vivo voltage recordings obtained during DECS and quantify the effects of electrode localization parameters on simulated voltages on the cortical surface. We measured intracranial voltages in six epilepsy patients during DECS and investigated the following electrode localization parameters: principal axis, Hermes, and Dykstra electrode projection methods combined with 0, 1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth between the electrode and cortical surface increased model errors and decreased predicted voltage accuracy. The electrode localization parameters that best estimated the recorded voltages across six patients with varying amounts of brain shift were the Hermes projection method and a CSF depth of 0 mm (r = 0.92 and linear regression slope = 1.21). These results are the first to quantify the effects of electrode localization parameters with in vivo intracranial recordings and may serve as the basis for future studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and other emerging closed-loop applications.

10.
Front Physiol ; 11: 660, 2020.
Article En | MEDLINE | ID: mdl-32695013

Mechanical ventilation is an essential lifesaving therapy in acute respiratory distress syndrome (ARDS) that may cause ventilator-induced lung injury (VILI) through a positive feedback between altered alveolar mechanics, edema, surfactant inactivation, and injury. Although the biophysical forces that cause VILI are well documented, a knowledge gap remains in the quantitative link between altered parenchymal structure (namely alveolar derecruitment and flooding), pulmonary function, and VILI. This information is essential to developing diagnostic criteria and ventilation strategies to reduce VILI and improve ARDS survival. To address this unmet need, we mechanically ventilated mice to cause VILI. Lung structure was measured at three air inflation pressures using design-based stereology, and the mechanical function of the pulmonary system was measured with the forced oscillation technique. Assessment of the pulmonary surfactant included total surfactant, distribution of phospholipid aggregates, and surface tension lowering activity. VILI-induced changes in the surfactant included reduced surface tension lowering activity in the typically functional fraction of large phospholipid aggregates and a significant increase in the pool of surface-inactive small phospholipid aggregates. The dominant alterations in lung structure at low airway pressures were alveolar collapse and flooding. At higher airway pressures, alveolar collapse was mitigated and the flooded alveoli remained filled with proteinaceous edema. The loss of ventilated alveoli resulted in decreased alveolar gas volume and gas-exchange surface area. These data characterize three alveolar phenotypes in murine VILI: flooded and non-recruitable alveoli, unstable alveoli that derecruit at airway pressures below 5 cmH2O, and alveoli with relatively normal structure and function. The fraction of alveoli with each phenotype is reflected in the proportional changes in pulmonary system elastance at positive end expiratory pressures of 0, 3, and 6 cmH2O.

11.
Respir Physiol Neurobiol ; 255: 22-29, 2018 09.
Article En | MEDLINE | ID: mdl-29742448

Understanding how the mechanisms of ventilator-induced lung injury (VILI), namely atelectrauma and volutrauma, contribute to the failure of the blood-gas barrier and subsequent intrusion of edematous fluid into the airspace is essential for the design of mechanical ventilation strategies that minimize VILI. We ventilated mice with different combinations of tidal volume and positive end-expiratory pressure (PEEP) and linked degradation in lung function measurements to injury of the alveolar epithelium observed via scanning electron microscopy. Ventilating with both high inspiratory plateau pressure and zero PEEP was necessary to cause derangements in lung function as well as visually apparent physical damage to the alveolar epithelium of initially healthy mice. In particular, the epithelial injury was tightly associated with indicators of alveolar collapse. These results support the hypothesis that mechanical damage to the epithelium during VILI is at least partially attributed to atelectrauma-induced damage of alveolar type I epithelial cells.


Alveolar Epithelial Cells/pathology , Ventilator-Induced Lung Injury/pathology , Ventilator-Induced Lung Injury/physiopathology , Animals , Disease Models, Animal , Female , Linear Models , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Respiration , Respiratory Function Tests , Tidal Volume
12.
Front Physiol ; 8: 466, 2017.
Article En | MEDLINE | ID: mdl-28736528

Mechanical ventilation is vital to the management of acute respiratory distress syndrome, but it frequently leads to ventilator-induced lung injury (VILI). Understanding the pathophysiological processes involved in the development of VILI is an essential prerequisite for improving lung-protective ventilation strategies. The goal of this study was to relate the amount and nature of material accumulated in the airspaces to biomarkers of injury and the derecruitment behavior of the lung in VILI. Forty-nine BALB/c mice were mechanically ventilated with combinations of tidal volume and end-expiratory pressures to produce varying degrees of overdistension and atelectasis while lung function was periodically assessed. Total protein, serum protein, and E-Cadherin levels were measured in bronchoalveolar lavage fluid (BALF). Tissue injury was assessed by histological scoring. We found that both high tidal volume and zero positive end-expiratory pressure were necessary to produce significant VILI. Increased BALF protein content was correlated with increased lung derecruitability, elevated peak pressures, and histological evidence of tissue injury. Blood derived molecules were present in the BALF in proportion to histological injury scores and epithelial injury, reflected by E-Cadherin levels in BALF. We conclude that repetitive recruitment is an important factor in the pathogenesis of VILI that exacerbates injury associated with tidal overdistension. Furthermore, the dynamic mechanical behavior of the injured lung provides a means to assess both the degree of tissue injury and the nature and amount of blood-derived fluid and proteins that accumulate in the airspaces.

...