Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Vet Pathol ; 61(4): 664-674, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38197423

ABSTRACT

NSG-SGM3 and NOG-EXL mice combine severe immunodeficiency with transgenic expression of human myeloid stimulatory cytokines, resulting in marked expansion of myeloid populations upon humanization with CD34+ hematopoietic stem cells (HSCs). Humanized NSG-SGM3 mice typically develop a lethal macrophage activation syndrome and mast cell hyperplasia that limit their use in long-term studies (e.g., humanization followed by tumor xenotransplantation). It is currently unclear to what extent humanized NOG-EXL mice suffer from the same condition observed in humanized NSG-SGM3 mice. We compared the effects of human CD34+ HSC engraftment in these two strains in an orthotopic patient-derived glioblastoma model. NSG-SGM3 mice humanized in-house were compared to NOG-EXL mice humanized in-house and commercially available humanized NOG-EXL mice. Mice were euthanized at humane or study endpoints, and complete pathological assessments were performed. A semiquantitative multiparametric clinicopathological scoring system was developed to characterize chimeric myeloid cell hyperactivation (MCH) syndrome. NSG-SGM3 mice were euthanized at 16 weeks after humanization because of severe deterioration of clinical conditions. Humanized NOG-EXL mice survived to the study endpoint at 22 weeks after humanization and showed less-severe MCH phenotypes than NSG-SGM3 mice. Major differences included the lack of mast cell expansion and limited tissue/organ involvement in NOG-EXL mice compared to NSG-SGM3 mice. Engraftment of human lymphocytes, assessed by immunohistochemistry, was similar in the two strains. The longer survival and decreased MCH phenotype severity in NOG-EXL mice enabled their use in a tumor xenotransplantation study. The NOG-EXL model is better suited than the NSG-SGM3 model for immuno-oncology studies requiring long-term survival after humanization.


Subject(s)
Antigens, CD34 , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Mice, Transgenic , Myeloid Cells , Animals , Mice , Humans , Hematopoietic Stem Cells/pathology , Antigens, CD34/metabolism , Myeloid Cells/pathology , Phenotype , Disease Models, Animal
2.
J Immunol ; 207(1): 44-54, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34162727

ABSTRACT

Multiple sclerosis (MS) is an idiopathic demyelinating disease in which meningeal inflammation correlates with accelerated disease progression. The study of meningeal inflammation in MS has been limited because of constrained access to MS brain/spinal cord specimens and the lack of experimental models recapitulating progressive MS. Unlike induced models, a spontaneously occurring model would offer a unique opportunity to understand MS immunopathogenesis and provide a compelling framework for translational research. We propose granulomatous meningoencephalomyelitis (GME) as a natural model to study neuropathological aspects of MS. GME is an idiopathic, progressive neuroinflammatory disease of young dogs with a female bias. In the GME cases examined in this study, the meninges displayed focal and disseminated leptomeningeal enhancement on magnetic resonance imaging, which correlated with heavy leptomeningeal lymphocytic infiltration. These leptomeningeal infiltrates resembled tertiary lymphoid organs containing large B cell clusters that included few proliferating Ki67+ cells, plasma cells, follicular dendritic/reticular cells, and germinal center B cell-like cells. These B cell collections were confined in a specialized network of collagen fibers associated with the expression of the lympho-organogenic chemokines CXCL13 and CCL21. Although neuroparenchymal perivascular infiltrates contained B cells, they lacked the immune signature of aggregates in the meningeal compartment. Finally, meningeal B cell accumulation correlated significantly with cortical demyelination reflecting neuropathological similarities to MS. Hence, during chronic neuroinflammation, the meningeal microenvironment sustains B cell accumulation that is accompanied by underlying neuroparenchymal injury, indicating GME as a novel, naturally occurring model to study compartmentalized neuroinflammation and the associated pathology thought to contribute to progressive MS.


Subject(s)
B-Lymphocytes/immunology , Disease Models, Animal , Meninges/immunology , Multiple Sclerosis, Chronic Progressive/immunology , Animals , B-Lymphocytes/pathology , Dogs , Meninges/pathology , Multiple Sclerosis, Chronic Progressive/pathology
3.
J Histochem Cytochem ; 69(3): 203-218, 2021 03.
Article in English | MEDLINE | ID: mdl-33283624

ABSTRACT

The mouse line carrying the Tg(Tyr-NRAS*Q61K)1Bee transgene is widely used to model in vivo NRAS-driven melanomagenesis. Although the pathological features of this model are well described, classification and interpretation of the resulting proliferative lesions-including their origin, evolution, grading, and pathobiological significance-are still unclear and not supported by molecular and biological evidence. Focusing on their classification and grading, this work combines histopathology and expression analysis (using both immunohistochemistry [IHC] and quantitative PCR) of selected biomarkers to study the full spectrum of cutaneous and lymph nodal melanocytic proliferations in the Tg(Tyr-NRAS*Q61K)1Bee mouse. The analysis of cutaneous and lymph nodal melanocytic proliferations has demonstrated that a linear correlation exists between tumor grade and Ki-67, microphthalmia-associated transcription factor (MITF), gp100, and nestin IHC, with a significantly increased expression in high-grade lesions compared with low-grade lesions. The accuracy of the assessment of MITF IHC in melanomas was also confirmed by quantitative PCR analysis. In conclusion, we believe the incorporation of MITF, Ki-67, gp100, and nestin analysis into the histopathological classification/grading scheme of melanocytic proliferations described for this model will help to assess with accuracy the nature and evolution of the phenotype, monitor disease progression, and predict response to experimental treatment or other preclinical manipulations.


Subject(s)
Biomarkers, Tumor/metabolism , Disease Models, Animal , Melanoma/metabolism , Monomeric GTP-Binding Proteins/metabolism , Animals , Biomarkers, Tumor/genetics , Cell Proliferation , Melanoma/pathology , Mice , Mice, Transgenic
4.
J Chem Ecol ; 30(12): 2515-25, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15724968

ABSTRACT

Five microsatellite loci were used to study the genetic variability and population structure of Sitobion avenae (Hemiptera: Aphididae) on some of its host plants. Individuals were collected in Chile from different cultivated and wild Poaceae. Forty-four multilocus genotypes were found among the 1052 aphids analyzed, of which four represented nearly 90% of the sample. No specialist genotypes were found, although some preferred hosts endowed with chemical defenses, i.e., hydroxamic acids (Hx), while others preferred comparatively undefended hosts. Performances of some predominant and some rare genotypes were evaluated on plants differing in their Hx levels. Significant differences in performance were found among clones, the two most common genotypes showing no differences in performance among all hosts tested, and the rare genotypes showing enhanced performance on the host with highest Hx level. A hypothesis is proposed whereby the appearance of rarer genotypes is in part related to the presence of Hx.


Subject(s)
Aphids/physiology , Clone Cells/physiology , Host-Parasite Interactions/genetics , Animals , Aphids/genetics , Defense Mechanisms , Genetic Variation , Genotype , Host-Parasite Interactions/physiology , Microsatellite Repeats , Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL